These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19024152)

  • 21. In vitro analysis of exeter stem torsional stability.
    Bell CG; Weinrauch P; Pearcy M; Crawford R
    J Arthroplasty; 2007 Oct; 22(7):1024-30. PubMed ID: 17920476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does increased bone-cement interface strength have negative consequences for bulk cement integrity? A finite element study.
    Pérez MA; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2009 Mar; 37(3):454-66. PubMed ID: 19085106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.
    Ramos A; Simões JA
    J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of the stem fixation scenario on load transfer in a hip resurfacing arthroplasty with a biomimetic stem.
    Caouette C; Bureau MN; Vendittoli PA; Lavigne M; Nuño N
    J Mech Behav Biomed Mater; 2015 May; 45():90-100. PubMed ID: 25688031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence.
    Lennon AB; Prendergast PJ
    J Biomech; 2002 Mar; 35(3):311-21. PubMed ID: 11858806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature.
    Hsieh PH; Tai CL; Chang YH; Lee MS; Shih HN; Shih CH
    J Orthop Res; 2006 Sep; 24(9):1809-14. PubMed ID: 16865715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatigue crack growth rate does not depend on mantle thickness: an idealized cemented stem construct under torsional loading.
    Hertzler J; Miller MA; Mann KA
    J Orthop Res; 2002 Jul; 20(4):676-82. PubMed ID: 12168654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Residual stresses at the stem-cement interface of an idealized cemented hip stem.
    Nuño N; Avanzolini G
    J Biomech; 2002 Jun; 35(6):849-52. PubMed ID: 12021006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of stem geometry on stresses within the distal cement mantle in total hip replacement.
    Schmölz W; Gordon DR; Shields AJ; Kirkwood D; Grigoris P
    Technol Health Care; 2000; 8(1):67-73. PubMed ID: 10942992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of long-term physiological activity on the long-term stem stability of cemented hip arthroplasty: in vitro comparison of three commercial bone cements.
    Bialoblocka-Juszczyk E; Cristofolini L; Erani P; Viceconti M
    Proc Inst Mech Eng H; 2010; 224(1):53-65. PubMed ID: 20225457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary stability of cementless stem in THA improved with reduced interfacial gaps.
    Park Y; Shin H; Choi D; Albert C; Yoon YS
    J Biomech Eng; 2008 Apr; 130(2):021008. PubMed ID: 18412495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite-element analysis of failure of the Capital Hip designs.
    Janssen D; Aquarius R; Stolk J; Verdonschot N
    J Bone Joint Surg Br; 2005 Nov; 87(11):1561-7. PubMed ID: 16260681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants.
    Lennon AB; Prendergast PJ
    J Biomech Eng; 2001 Dec; 123(6):623-8. PubMed ID: 11783734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2011 Jan; 44(2):228-34. PubMed ID: 21036358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of curing history on residual stresses in bone cement during hip arthroplasty.
    Li C; Wang Y; Mason J
    J Biomed Mater Res B Appl Biomater; 2004 Jul; 70(1):30-6. PubMed ID: 15199580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity analysis of a cemented hip stem to implant position and cement mantle thickness.
    Shi J; Browne M; Strickland M; Flivik G; Taylor M
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1671-84. PubMed ID: 23405986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cement-implant interface gaps explain the poor results of CMW3 for femoral stem fixation: A cadaver study of migration, fatigue and mantle morphology.
    Race A; Miller MA; Clarke MT; Mann KA
    Acta Orthop; 2005 Oct; 76(5):679-87. PubMed ID: 16263615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement.
    Stolk J; Verdonschot N; Mann KA; Huiskes R
    J Biomech; 2003 Jun; 36(6):861-71. PubMed ID: 12742454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porosity reduction in bone cement at the cement-stem interface.
    Bishop NE; Ferguson S; Tepic S
    J Bone Joint Surg Br; 1996 May; 78(3):349-56. PubMed ID: 8636165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.