These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1902429)

  • 1. Adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase.
    Chen LJ; Ford C; Nikolov Z
    Gene; 1991 Mar; 99(1):121-6. PubMed ID: 1902429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding domain from Aspergillus glucoamylase.
    Chen LJ; Ford C; Kusnadi A; Nikolov ZL
    Biotechnol Prog; 1991; 7(3):225-9. PubMed ID: 1367595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional starch-binding domain of Aspergillus glucoamylase I in Escherichia coli.
    Kusnadi AR; Ford C; Nikolov ZL
    Gene; 1993 May; 127(2):193-7. PubMed ID: 8500760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A glutathione S-transferase fusion protein with the starch-binding domain of Aspergillus glucoamylase.
    Dalmia BK; Nikolov ZL
    Ann N Y Acad Sci; 1994 May; 721():160-7. PubMed ID: 8010667
    [No Abstract]   [Full Text] [Related]  

  • 5. Construction of an alpha-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae.
    Shibuya I; Tamura G; Shima H; Ishikawa T; Hara S
    Biosci Biotechnol Biochem; 1992 Jun; 56(6):884-9. PubMed ID: 1368253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced recovery and purification of Aspergillus glucoamylase from Saccharomyces cerevisiae by the addition of poly(aspartic acid) tails.
    Suominen I; Ford C; Stachon D; Heimo H; Niederauer M; Nurmela H; Glatz C
    Enzyme Microb Technol; 1993 Jul; 15(7):593-600. PubMed ID: 7763957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch-binding domain of Aspergillus glucoamylase-I. Interaction with beta-cyclodextrin and maltoheptaose.
    Kusnadi AR; Chang HY; Nikolov ZL; Metzler DE; Metzler CM
    Ann N Y Acad Sci; 1994 May; 721():168-77. PubMed ID: 8010668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins.
    de Moraes LM; Astolfi-Filho S; Oliver SG
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity and thermal stability of genetically truncated forms of Aspergillus glucoamylase.
    Evans R; Ford C; Sierks M; Nikolov Z; Svensson B
    Gene; 1990 Jul; 91(1):131-4. PubMed ID: 2119327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase.
    Fukuda K; Teramoto Y; Goto M; Sakamoto J; Mitsuiki S; Hayashida S
    Biosci Biotechnol Biochem; 1992 Apr; 56(4):556-9. PubMed ID: 1368209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CBM21 starch-binding domain: a new purification tag for recombinant protein engineering.
    Lin SC; Lin IP; Chou WI; Hsieh CA; Liu SH; Huang RY; Sheu CC; Chang MD
    Protein Expr Purif; 2009 Jun; 65(2):261-6. PubMed ID: 19297701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain.
    Heimo H; Palmu K; Suominen I
    Protein Expr Purif; 1997 Jun; 10(1):70-9. PubMed ID: 9179293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.
    Paldi T; Levy I; Shoseyov O
    Biochem J; 2003 Jun; 372(Pt 3):905-10. PubMed ID: 12646045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of amino acid deletions in the O-glycosylated region of Aspergillus awamori glucoamylase.
    Libby CB; Cornett CA; Reilly PJ; Ford C
    Protein Eng; 1994 Sep; 7(9):1109-14. PubMed ID: 7831281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion analysis of the starch-binding domain of Aspergillus glucoamylase.
    Chen L; Coutinho PM; Nikolov Z; Ford C
    Protein Eng; 1995 Oct; 8(10):1049-55. PubMed ID: 8771186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase.
    Juge N; Nøhr J; Le Gal-Coëffet MF; Kramhøft B; Furniss CS; Planchot V; Archer DB; Williamson G; Svensson B
    Biochim Biophys Acta; 2006 Feb; 1764(2):275-84. PubMed ID: 16403494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and determination of the nucleotide sequence of raw starch digesting alpha-amylase from Aspergillus awamori KT-11.
    Matsubara T; Ben Ammar Y; Anindyawati T; Yamamoto S; Ito K; Iizuka M; Minamiura N
    J Biochem Mol Biol; 2004 Jul; 37(4):429-38. PubMed ID: 15469730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger.
    Belshaw NJ; Williamson G
    FEBS Lett; 1990 Sep; 269(2):350-3. PubMed ID: 2119316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae.
    Goto M; Semimaru T; Furukawa K; Hayashida S
    Appl Environ Microbiol; 1994 Nov; 60(11):3926-30. PubMed ID: 7993082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene.
    Punt PJ; Zegers ND; Busscher M; Pouwels PH; van den Hondel CA
    J Biotechnol; 1991 Jan; 17(1):19-33. PubMed ID: 1367494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.