BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19024451)

  • 1. [Development of the personalized finite element model of the adolescent idiopathic scoliosis and its significance].
    Wang Z; Liu Z; Wang Z; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1084-8. PubMed ID: 19024451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of the thoracic cage on the vertebral axial rotation of adolescent idiopathic scoliosis: a biomechanical study].
    Li XF; Liu ZD; Wang ZY; Nie WZ
    Zhonghua Wai Ke Za Zhi; 2010 Nov; 48(21):1646-9. PubMed ID: 21211261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical study of the Charleston brace for the treatment of scoliosis.
    Clin J; Aubin CE; Parent S; Labelle H
    Spine (Phila Pa 1976); 2010 Sep; 35(19):E940-7. PubMed ID: 20431434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of idiopathic scoliosis progression by using numerical simulation.
    Drevelle X; Lafon Y; Ebermeyer E; Courtois I; Dubousset J; Skalli W
    Spine (Phila Pa 1976); 2010 May; 35(10):E407-12. PubMed ID: 20393388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D finite element simulation of Cotrel-Dubousset correction.
    Lafage V; Dubousset J; Lavaste F; Skalli W
    Comput Aided Surg; 2004; 9(1-2):17-25. PubMed ID: 15792933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Deformation Patterns of S Shaped Elastic Rods as a Pathogenesis Model for Spinal Deformity in Adolescent Idiopathic Scoliosis.
    Pasha S
    Sci Rep; 2019 Nov; 9(1):16485. PubMed ID: 31712762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biomechanical study of individual brace for the correction of scoliosis].
    Nie W; Ye M; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):313-7. PubMed ID: 19499793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of adolescent idiopathic scoliosis from body scanner image by finite element simulations.
    Grünwald ATD; Roy S; Alves-Pinto A; Lampe R
    PLoS One; 2021; 16(2):e0243736. PubMed ID: 33566808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element comparison of different growth sparring instrumentation systems for the early treatment of idiopathic scoliosis.
    Driscoll M; Aubin CE; Moreau A; Parent S
    Stud Health Technol Inform; 2010; 158():89-94. PubMed ID: 20543406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional surface rendering reconstruction of scoliotic vertebrae using a non stereo-corresponding points technique.
    Mitulescu A; Skalli W; Mitton D; De Guise JA
    Eur Spine J; 2002 Aug; 11(4):344-52. PubMed ID: 12193996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method to include the gravitational forces in a finite element model of the scoliotic spine.
    Clin J; Aubin CÉ; Lalonde N; Parent S; Labelle H
    Med Biol Eng Comput; 2011 Aug; 49(8):967-77. PubMed ID: 21728065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery.
    Lalonde NM; Villemure I; Pannetier R; Parent S; Aubin CE
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):510-6. PubMed ID: 20413197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional subclassification of Lenke type 1 scoliotic curves.
    Duong L; Mac-Thiong JM; Cheriet F; Labelle H
    J Spinal Disord Tech; 2009 Apr; 22(2):135-43. PubMed ID: 19342936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics of the intra-operative lateral decubitus position for the scoliotic spine: effect of the pelvic obliquity.
    Lalonde NM; Aubin CE; Parent S; Pannetier R; Villemure I
    Stud Health Technol Inform; 2010; 158():95-100. PubMed ID: 20543407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method].
    Aubin CE; Descrimes JL; Dansereau J; Skalli W; Lavaste F; Labelle H
    Ann Chir; 1995; 49(8):749-61. PubMed ID: 8561431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks.
    Little JP; Adam CJ
    Comput Methods Biomech Biomed Engin; 2015; 18(6):676-88. PubMed ID: 24261987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine.
    Vrtovec T; Likar B; Pernus F
    Phys Med Biol; 2008 Apr; 53(7):1895-908. PubMed ID: 18364545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and validation of a three-dimensional finite element model of degenerative scoliosis.
    Zheng J; Yang Y; Lou S; Zhang D; Liao S
    J Orthop Surg Res; 2015 Dec; 10():189. PubMed ID: 26704779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the influences of various force magnitudes and configurations on scoliotic curve correction using finite element analysis.
    Karimi MT; Ebrahimi MH; Mohammadi A; McGarry A
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):231-236. PubMed ID: 27896687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scoliosis surgery.
    Violas P; Estivalezes E; Briot J; Sales de Gauzy J; Swider P
    Spine (Phila Pa 1976); 2007 Jul; 32(15):E405-12. PubMed ID: 17621196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.