These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19024479)

  • 1. [Application of feedback techniques in motor function rehabilitation].
    Wu X; Hou W; Zheng X; Peng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1213-6. PubMed ID: 19024479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality environments for post-stroke arm rehabilitation.
    Subramanian S; Knaut LA; Beaudoin C; McFadyen BJ; Feldman AG; Levin MF
    J Neuroeng Rehabil; 2007 Jun; 4():20. PubMed ID: 17587441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor recovery strategies after stroke.
    Stein J
    Top Stroke Rehabil; 2004; 11(2):12-22. PubMed ID: 15118963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating haptic-tactile feedback into a video-capture-based virtual environment for rehabilitation.
    Feintuch U; Raz L; Hwang J; Josman N; Katz N; Kizony R; Rand D; Rizzo AS; Shahar M; Yongseok J; Weiss PL
    Cyberpsychol Behav; 2006 Apr; 9(2):129-32. PubMed ID: 16640464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrinsic feedback for motor learning after stroke: what is the evidence?
    van Vliet PM; Wulf G
    Disabil Rehabil; 2006 Jul 15-30; 28(13-14):831-40. PubMed ID: 16777770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor neglect: implications for movement and rehabilitation following stroke.
    Punt TD; Riddoch MJ
    Disabil Rehabil; 2006 Jul 15-30; 28(13-14):857-64. PubMed ID: 16777773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computerized visual feedback: an adjunct to robotic-assisted gait training.
    Banz R; Bolliger M; Colombo G; Dietz V; Lünenburger L
    Phys Ther; 2008 Oct; 88(10):1135-45. PubMed ID: 18772279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of virtual reality proprioceptive rehabilitation system for stroke patients.
    Cho S; Ku J; Cho YK; Kim IY; Kang YJ; Jang DP; Kim SI
    Comput Methods Programs Biomed; 2014; 113(1):258-65. PubMed ID: 24183070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality-enhanced stroke rehabilitation.
    Jack D; Boian R; Merians AS; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):308-18. PubMed ID: 11561668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitating clinical decision-making about the use of virtual reality within paediatric motor rehabilitation: application of a classification framework.
    Levac DE; Galvin J
    Dev Neurorehabil; 2011; 14(3):177-84. PubMed ID: 21548859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stroke rehabilitation at home using virtual reality, haptics and telemedicine.
    Rydmark M; Broeren J; Pascher R
    Stud Health Technol Inform; 2002; 85():434-7. PubMed ID: 15458128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental results using force-feedback cueing in robot-assisted stroke therapy.
    Johnson MJ; Van der Loos HF; Burgar CG; Shor P; Leifer LJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):335-48. PubMed ID: 16200757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive mixed reality training system for stroke rehabilitation.
    Duff M; Chen Y; Attygalle S; Herman J; Sundaram H; Qian G; He J; Rikakis T
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):531-41. PubMed ID: 20934938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving manual skills in persons with disabilities (PWD) through a multimodal assistance system.
    Covarrubias M; Gatti E; Bordegoni M; Cugini U; Mansutti A
    Disabil Rehabil Assist Technol; 2014 Jul; 9(4):335-43. PubMed ID: 23692410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rehabilitation after stroke using virtual reality, haptics (force feedback) and telemedicine.
    Broeren J; Dixon M; Sunnerhagen KS; Rydmark M
    Stud Health Technol Inform; 2006; 124():51-6. PubMed ID: 17108503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of simulator training on driving after stroke: a randomized controlled trial.
    Akinwuntan AE; De Weerdt W; Feys H; Pauwels J; Baten G; Arno P; Kiekens C
    Neurology; 2005 Sep; 65(6):843-50. PubMed ID: 16186521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress?
    Lucca LF
    J Rehabil Med; 2009 Nov; 41(12):1003-100. PubMed ID: 19841832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design.
    Timmermans AA; Seelen HA; Willmann RD; Kingma H
    J Neuroeng Rehabil; 2009 Jan; 6():1. PubMed ID: 19154570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke.
    Broeren J; Rydmark M; Björkdahl A; Sunnerhagen KS
    Neurorehabil Neural Repair; 2007; 21(2):180-9. PubMed ID: 17312093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.