These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19024732)

  • 1. Fixation of heavy metals onto lignocellulosic sorbent prepared from paddy straw.
    Krishnani KK; Meng X; Boddu VM
    Water Environ Res; 2008 Nov; 80(11):2165-74. PubMed ID: 19024732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk.
    Krishnani KK; Meng X; Christodoulatos C; Boddu VM
    J Hazard Mater; 2008 May; 153(3):1222-34. PubMed ID: 18006228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal ions binding onto lignocellulosic biosorbent.
    Krishnani KK; Meng X; Dupont L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jun; 44(7):688-99. PubMed ID: 19412851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignocellulosic Wheat Straw-Derived Ion-Exchange Adsorbent for Heavy Metals Removal.
    Krishnani KK
    Appl Biochem Biotechnol; 2016 Feb; 178(4):670-86. PubMed ID: 26494139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a glass residue in the removal of heavy metals from wastewater.
    Catalfamo P; Primerano P; Arrigo I; Corigliano F
    Ann Chim; 2006; 96(7-8):487-92. PubMed ID: 16948437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass.
    Hawari AH; Mulligan CN
    Bioresour Technol; 2006 Mar; 97(4):692-700. PubMed ID: 15935654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies.
    Reddad Z; Gerente C; Andres Y; Le Cloirec P
    Environ Sci Technol; 2002 May; 36(9):2067-73. PubMed ID: 12026994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metals binding properties of esterified lemon.
    Arslanoglu H; Altundogan HS; Tumen F
    J Hazard Mater; 2009 May; 164(2-3):1406-13. PubMed ID: 18980807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Petiolar felt-sheath of palm: a new biosorbent for the removal of heavy metals from contaminated water.
    Iqbal M; Saeed A; Akhtar N
    Bioresour Technol; 2002 Jan; 81(2):151-3. PubMed ID: 11762907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous heavy metal removal mechanism by dead macrophytes.
    Miretzky P; Saralegui A; Fernández Cirelli A
    Chemosphere; 2006 Jan; 62(2):247-54. PubMed ID: 15990152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of cost-effective coconut husk for the removal of toxic metal ions for environmental protection.
    Hasany SM; Ahmad R
    J Environ Manage; 2006 Nov; 81(3):286-95. PubMed ID: 16713064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process.
    Tran HN; Chao HP
    Environ Sci Pollut Res Int; 2018 May; 25(13):12808-12820. PubMed ID: 29476368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water.
    Du Z; Zheng T; Wang P; Hao L; Wang Y
    Bioresour Technol; 2016 Feb; 201():41-9. PubMed ID: 26630582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.
    Pehlivan E; Arslan G
    J Hazard Mater; 2006 Nov; 138(2):401-8. PubMed ID: 16962233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process.
    Chojnacka K; Chojnacki A; Górecka H
    Chemosphere; 2005 Mar; 59(1):75-84. PubMed ID: 15698647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.