BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19025012)

  • 1. Derivation of cochlea hair cell for in vitro expansion and characterization.
    Ibnubaidah MA; Chua KH; Mazita A; Azida ZN; Aminuddin BS; Ruszymah BH; Lokman BS
    Med J Malaysia; 2008 Jul; 63 Suppl A():115-6. PubMed ID: 19025012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of adult mouse olfactory precursor cells into hair cells in vitro.
    Doyle KL; Kazda A; Hort Y; McKay SM; Oleskevich S
    Stem Cells; 2007 Mar; 25(3):621-7. PubMed ID: 17110620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of proliferating cells from newborn mouse cochleae.
    Wang Z; Jiang H; Yan Y; Wang Y; Shen Y; Li W; Li H
    Neuroreport; 2006 May; 17(8):767-71. PubMed ID: 16708012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A; Sulg M; Heyd F; Alitalo K; Ylä-Herttuala S; Möröy T; Petrova TV; Pirvola U
    Dev Biol; 2008 Oct; 322(1):33-45. PubMed ID: 18652815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The primary culture of rats cochlear sensory epithelial cell and the significance of expression of hair cell characteristic markers of CSEC].
    Liu J; Kong W; Zhang D; Zhang Y; Liu Z
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2007 Jan; 21(1):27-31. PubMed ID: 17438861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pluripotent stem cells from the adult mouse inner ear.
    Li H; Liu H; Heller S
    Nat Med; 2003 Oct; 9(10):1293-9. PubMed ID: 12949502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipotent stem cells from the young rat inner ear.
    Lou X; Zhang Y; Yuan C
    Neurosci Lett; 2007 Apr; 416(1):28-33. PubMed ID: 17350759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vitro culture of greater epithelial ridge cells from rat cochleae].
    Zhang Y; Sun JH; Hu YY; Zheng GL; Zhai SQ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2007 Oct; 42(10):760-4. PubMed ID: 18229588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hair cell formation in cultures of dissociated cells from the vestibular sensory epithelium of the bullfrog.
    Cristobal R; Lopez I; Chiang S; Honrubia D; Zamora C; Espinosa de los Monteros A; Micevych P; Honrubia V
    Am J Otol; 1998 Sep; 19(5):660-8. PubMed ID: 9752977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Overexpression of Hath1 induces production of hair cell-like cells in greater epithelial ridge cell cultures from postnatal rat cochlea].
    Zhang Y; Hu YY; Guo W; Zhai SQ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2008 May; 43(5):360-3. PubMed ID: 18717312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hair cell distributions in the normal human cochlea.
    Wright A; Davis A; Bredberg G; Ulehlova L; Spencer H
    Acta Otolaryngol Suppl; 1987; 444():1-48. PubMed ID: 3482777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Techniques for isolating hair cells from guinea pig cochlea].
    Su Z
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1992; 27(3):133-5, 189. PubMed ID: 1419187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Differentiation, protection and regeneration of hair cells and auditory neurons in mammals].
    Malgrange B
    Bull Mem Acad R Med Belg; 2005; 160(5-6):276-86. PubMed ID: 16465782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Long-term culture of utricular sensory epithelial cell of rats and expression of the hair cell characteristic markers].
    Liu J; Kong W
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Oct; 23(19):889-93. PubMed ID: 20120876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techniques for isolating hair cells from guinea pig cochlea.
    Su ZL; Jiang SC; Gu R; Li WB; Zhang BL
    Chin Med J (Engl); 1993 Feb; 106(2):115-7. PubMed ID: 8504694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensitivity of mammalian auditory hair cells in vitro.
    Russell IJ; Richardson GP; Cody AR
    Nature; 1986 May 29-Jun 4; 321(6069):517-9. PubMed ID: 3713830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calbindin and S100 protein expression in the developing inner ear in mice.
    Buckiová D; Syka J
    J Comp Neurol; 2009 Apr; 513(5):469-82. PubMed ID: 19226521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Otospheres derived from neonatal mouse cochleae retain the progenitor cell phenotype after ex vivo expansions.
    Lou XX; Nakagawa T; Ohnishi H; Nishimura K; Ito J
    Neurosci Lett; 2013 Feb; 534():18-23. PubMed ID: 23238450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cycle regulation in the inner ear sensory epithelia: role of cyclin D1 and cyclin-dependent kinase inhibitors.
    Laine H; Sulg M; Kirjavainen A; Pirvola U
    Dev Biol; 2010 Jan; 337(1):134-46. PubMed ID: 19854167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of mouse cochlear stem cells.
    Yerukhimovich MV; Bai L; Chen DH; Miller RH; Alagramam KN
    Dev Neurosci; 2007; 29(3):251-60. PubMed ID: 17047322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.