These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 19025566)
1. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease. Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566 [TBL] [Abstract][Full Text] [Related]
2. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Obrist M; Milek S; Klauck E; Hengge R; Narberhaus F Microbiology (Reading); 2007 Aug; 153(Pt 8):2560-2571. PubMed ID: 17660420 [TBL] [Abstract][Full Text] [Related]
3. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach. Obrist M; Narberhaus F J Bacteriol; 2005 Jun; 187(11):3807-13. PubMed ID: 15901705 [TBL] [Abstract][Full Text] [Related]
4. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. Horikoshi M; Yura T; Tsuchimoto S; Fukumori Y; Kanemori M J Bacteriol; 2004 Nov; 186(22):7474-80. PubMed ID: 15516558 [TBL] [Abstract][Full Text] [Related]
5. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related]
7. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli. Morita MT; Kanemori M; Yanagi H; Yura T Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971 [TBL] [Abstract][Full Text] [Related]
8. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Bruckner RC; Gunyuzlu PL; Stein RL Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509 [TBL] [Abstract][Full Text] [Related]
9. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. Bertani D; Oppenheim AB; Narberhaus F FEBS Lett; 2001 Mar; 493(1):17-20. PubMed ID: 11277997 [TBL] [Abstract][Full Text] [Related]
10. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nakahigashi K; Yanagi H; Yura T Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460 [TBL] [Abstract][Full Text] [Related]
11. The C terminus of sigma(32) is not essential for degradation by FtsH. Tomoyasu T; Arsène F; Ogura T; Bukau B J Bacteriol; 2001 Oct; 183(20):5911-7. PubMed ID: 11566990 [TBL] [Abstract][Full Text] [Related]
12. The C-terminal end of LpxC is required for degradation by the FtsH protease. Führer F; Langklotz S; Narberhaus F Mol Microbiol; 2006 Feb; 59(3):1025-36. PubMed ID: 16420369 [TBL] [Abstract][Full Text] [Related]
13. Stress responses to heterologous membrane protein expression in Escherichia coli. Xu LY; Link AJ Biotechnol Lett; 2009 Nov; 31(11):1775-82. PubMed ID: 19588252 [TBL] [Abstract][Full Text] [Related]
14. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex. Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of the Xanthomonas campestris rpoH gene coding for a 32-kDa heat shock sigma factor. Huang LH; Tseng YH; Yang MT Biochem Biophys Res Commun; 1998 Mar; 244(3):854-60. PubMed ID: 9535756 [TBL] [Abstract][Full Text] [Related]
16. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. Okuno T; Yamada-Inagawa T; Karata K; Yamanaka K; Ogura T J Struct Biol; 2004; 146(1-2):148-54. PubMed ID: 15037246 [TBL] [Abstract][Full Text] [Related]
17. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833 [TBL] [Abstract][Full Text] [Related]
18. [Genetic regulation of the heat-shock response in Escherichia coli]. Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571 [TBL] [Abstract][Full Text] [Related]
19. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. Okuno T; Yamanaka K; Ogura T J Struct Biol; 2006 Oct; 156(1):109-14. PubMed ID: 16563799 [TBL] [Abstract][Full Text] [Related]
20. Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro. Srinivasan R; Rajeswari H; Ajitkumar P Microbiol Res; 2008; 163(1):21-30. PubMed ID: 16638632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]