These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19025584)

  • 1. Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases.
    Fukuda E; Kaminska KH; Bujnicki JM; Kobayashi I
    Genome Biol; 2008; 9(11):R163. PubMed ID: 19025584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems.
    Ishikawa K; Fukuda E; Kobayashi I
    DNA Res; 2010 Dec; 17(6):325-42. PubMed ID: 21059708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage of a model DNA replication fork by a methyl-specific endonuclease.
    Ishikawa K; Handa N; Sears L; Raleigh EA; Kobayashi I
    Nucleic Acids Res; 2011 Jul; 39(13):5489-98. PubMed ID: 21441537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaping the genome--restriction-modification systems as mobile genetic elements.
    Kobayashi I; Nobusato A; Kobayashi-Takahashi N; Uchiyama I
    Curr Opin Genet Dev; 1999 Dec; 9(6):649-56. PubMed ID: 10607611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mobile restriction-modification system provides phage defence and resolves an epigenetic conflict with an antagonistic endonuclease.
    Birkholz N; Jackson SA; Fagerlund RD; Fineran PC
    Nucleic Acids Res; 2022 Apr; 50(6):3348-3361. PubMed ID: 35286398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.
    Kobayashi I
    Nucleic Acids Res; 2001 Sep; 29(18):3742-56. PubMed ID: 11557807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the mcrBC region of Escherichia coli K-12 wild-type and mutant strains.
    Krüger T; Grund C; Wild C; Noyer-Weidner M
    Gene; 1992 May; 114(1):1-12. PubMed ID: 1316864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. McrBC: a multisubunit GTP-dependent restriction endonuclease.
    Sutherland E; Coe L; Raleigh EA
    J Mol Biol; 1992 May; 225(2):327-48. PubMed ID: 1317461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DNA methyltransferase can protect the genome from postdisturbance attack by a restriction-modification gene complex.
    Takahashi N; Naito Y; Handa N; Kobayashi I
    J Bacteriol; 2002 Nov; 184(22):6100-8. PubMed ID: 12399478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of McrBC cleavage on distance between recognition elements.
    Stewart FJ; Raleigh EA
    Biol Chem; 1998; 379(4-5):611-6. PubMed ID: 9628366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex restriction enzymes: NTP-driven molecular motors.
    Bourniquel AA; Bickle TA
    Biochimie; 2002 Nov; 84(11):1047-59. PubMed ID: 12595133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for horizontal transfer of the EcoT38I restriction-modification gene to chromosomal DNA by the P2 phage and diversity of defective P2 prophages in Escherichia coli TH38 strains.
    Kita K; Kawakami H; Tanaka H
    J Bacteriol; 2003 Apr; 185(7):2296-305. PubMed ID: 12644501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme.
    Stewart FJ; Panne D; Bickle TA; Raleigh EA
    J Mol Biol; 2000 May; 298(4):611-22. PubMed ID: 10788324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
    Tauch A; Kirchner O; Wehmeier L; Kalinowski J; Pühler A
    FEMS Microbiol Lett; 1994 Nov; 123(3):343-7. PubMed ID: 7988915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization and function of the mcrBC genes of Escherichia coli K-12.
    Raleigh EA
    Mol Microbiol; 1992 May; 6(9):1079-86. PubMed ID: 1316984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the methyl-specific restriction system of Streptomyces coelicolor A3(2) and of the role played by laterally acquired nucleases.
    González-Cerón G; Miranda-Olivares OJ; Servín-González L
    FEMS Microbiol Lett; 2009 Nov; 301(1):35-43. PubMed ID: 19796133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step cloning and expression in Escherichia coli of the DNA restriction-modification system StyLTI of Salmonella typhimurium.
    De Backer O; Colson C
    J Bacteriol; 1991 Feb; 173(3):1321-7. PubMed ID: 1846861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 'endo-blue method' for direct cloning of restriction endonuclease genes in E. coli.
    Fomenkov A; Xiao JP; Dila D; Raleigh E; Xu SY
    Nucleic Acids Res; 1994 Jun; 22(12):2399-403. PubMed ID: 8036170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restriction-modification gene complexes as selfish gene entities: roles of a regulatory system in their establishment, maintenance, and apoptotic mutual exclusion.
    Nakayama Y; Kobayashi I
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6442-7. PubMed ID: 9600985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of participation of McrB(S) in McrBC restriction in Escherichia coli K-12.
    Beary TP; Braymer HD; Achberger EC
    J Bacteriol; 1997 Dec; 179(24):7768-75. PubMed ID: 9401036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.