BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 19025760)

  • 1. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system.
    Dhuria SV; Hanson LR; Frey WH
    J Pharm Sci; 2009 Jul; 98(7):2501-15. PubMed ID: 19025760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system.
    Dhuria SV; Hanson LR; Frey WH
    J Pharmacol Exp Ther; 2009 Jan; 328(1):312-20. PubMed ID: 18945930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
    Thorne RG; Pronk GJ; Padmanabhan V; Frey WH
    Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intranasal delivery to the central nervous system: mechanisms and experimental considerations.
    Dhuria SV; Hanson LR; Frey WH
    J Pharm Sci; 2010 Apr; 99(4):1654-73. PubMed ID: 19877171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct transport of VEGF from the nasal cavity to brain.
    Yang JP; Liu HJ; Cheng SM; Wang ZL; Cheng X; Yu HX; Liu XF
    Neurosci Lett; 2009 Jan; 449(2):108-11. PubMed ID: 18996442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis.
    Ross TM; Martinez PM; Renner JC; Thorne RG; Hanson LR; Frey WH
    J Neuroimmunol; 2004 Jun; 151(1-2):66-77. PubMed ID: 15145605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intranasal administration delivers peptoids to the rat central nervous system.
    Ross TM; Zuckermann RN; Reinhard C; Frey WH
    Neurosci Lett; 2008 Jul; 439(1):30-3. PubMed ID: 18501511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetic profile of orexin A and effects on plasma insulin and glucagon in the rat.
    Ehrström M; Näslund E; Levin F; Kaur R; Kirchgessner AL; Theodorsson E; Hellström PM
    Regul Pept; 2004 Jul; 119(3):209-12. PubMed ID: 15120482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of interferon-beta to the monkey nervous system following intranasal administration.
    Thorne RG; Hanson LR; Ross TM; Tung D; Frey WH
    Neuroscience; 2008 Mar; 152(3):785-97. PubMed ID: 18304744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates.
    Deadwyler SA; Porrino L; Siegel JM; Hampson RE
    J Neurosci; 2007 Dec; 27(52):14239-47. PubMed ID: 18160631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of intranasal hypocretin-1 (orexin A) on sleep in narcolepsy with cataplexy.
    Baier PC; Hallschmid M; Seeck-Hirschner M; Weinhold SL; Burkert S; Diessner N; Göder R; Aldenhoff JB; Hinze-Selch D
    Sleep Med; 2011 Dec; 12(10):941-6. PubMed ID: 22036605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal orexin-1 receptors mediate anti-hyperalgesic effects of intrathecally-administered orexins in diabetic neuropathic pain model rats.
    Kajiyama S; Kawamoto M; Shiraishi S; Gaus S; Matsunaga A; Suyama H; Yuge O
    Brain Res; 2005 May; 1044(1):76-86. PubMed ID: 15862792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preparation of huperzine A nasal in situ gel and evaluation of its brain targeting following intranasal administration].
    Tao T; Zhao Y; Yue P; Dong WX; Chen QH
    Yao Xue Xue Bao; 2006 Nov; 41(11):1104-10. PubMed ID: 17262956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food consumption and activity levels increase in rats following intranasal Hypocretin-1.
    Dhuria SV; Fine JM; Bingham D; Svitak AL; Burns RB; Baillargeon AM; Panter SS; Kazi AN; Frey WH; Hanson LR
    Neurosci Lett; 2016 Aug; 627():155-9. PubMed ID: 27264485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model.
    Charlton ST; Whetstone J; Fayinka ST; Read KD; Illum L; Davis SS
    Pharm Res; 2008 Jul; 25(7):1531-43. PubMed ID: 18293062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positron Emission Tomography Assessment of the Intranasal Delivery Route for Orexin A.
    Van de Bittner GC; Van de Bittner KC; Wey HY; Rowe W; Dharanipragada R; Ying X; Hurst W; Giovanni A; Alving K; Gupta A; Hoekman J; Hooker JM
    ACS Chem Neurosci; 2018 Feb; 9(2):358-368. PubMed ID: 29035509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats.
    Chow HS; Chen Z; Matsuura GT
    J Pharm Sci; 1999 Aug; 88(8):754-8. PubMed ID: 10430537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery.
    Kumar NN; Lochhead JJ; Pizzo ME; Nehra G; Boroumand S; Greene G; Thorne RG
    J Control Release; 2018 Sep; 286():467-484. PubMed ID: 30081144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intranasal hypocretin-1: making sense of scents?
    Lammers GJ
    Sleep Med; 2011 Dec; 12(10):939-40. PubMed ID: 22136855
    [No Abstract]   [Full Text] [Related]  

  • 20. Pharmacokinetics of baicalin-phospholipid complex in rat plasma and brain tissues after intranasal and intravenous administration.
    Li N; Je YJ; Yang M; Jiang XH; Ma JH
    Pharmazie; 2011 May; 66(5):374-7. PubMed ID: 21699072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.