These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 190266)
1. Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2. Simon LM; Robin ED; Phillips JR; Acevedo J; Axline SG; Theodore J J Clin Invest; 1977 Mar; 59(3):443-8. PubMed ID: 190266 [TBL] [Abstract][Full Text] [Related]
2. Changes in energy metabolism, structure and function in alveolar macrophages under anaerobic conditions. Butterick CJ; Williams DA; Boxer LA; Jersild RA; Mantich N; Higgins C; Baehner RL Br J Haematol; 1981 Aug; 48(4):523-32. PubMed ID: 6268138 [TBL] [Abstract][Full Text] [Related]
3. Alterations in the pattern of arachidonate metabolism accompany rat macrophage differentiation in the lung. Peters-Golden M; McNish RW; Hyzy R; Shelly C; Toews GB J Immunol; 1990 Jan; 144(1):263-70. PubMed ID: 2104888 [TBL] [Abstract][Full Text] [Related]
4. Effects of high oxygen exposure on bioenergetics in isolated type II pneumocytes. Simon LM; Raffin TA; Douglas WH; Theodore J; Robin ED J Appl Physiol Respir Environ Exerc Physiol; 1979 Jul; 47(1):98-103. PubMed ID: 224021 [TBL] [Abstract][Full Text] [Related]
5. Bioenergetic pattern of isolated type II pneumocytes in air and during hypoxia. Simon LM; Robin ED; Raffin T; Theodore J; Douglas WH J Clin Invest; 1978 May; 61(5):1232-9. PubMed ID: 207732 [TBL] [Abstract][Full Text] [Related]
7. Differences in oxygen-dependent regulation of enzymes between tumor and normal cell systems in culture. Simon LM; Robin ED; Theodore J J Cell Physiol; 1981 Sep; 108(3):393-400. PubMed ID: 6270167 [TBL] [Abstract][Full Text] [Related]
8. The progeny of a single progenitor cell can develop characteristics of either a tissue or an alveolar macrophage. Bar-Eli M; Territo MC; Cline MJ Blood; 1981 Jan; 57(1):95-8. PubMed ID: 7448418 [TBL] [Abstract][Full Text] [Related]
9. Suppression of glucose utilization of murine peritoneal exudate macrophages by body fluids from cancer patients and identification of the susceptible enzyme. Nakamura K; Nakajima Y; Nakamura Y J Natl Cancer Inst; 1986 Nov; 77(5):1035-8. PubMed ID: 2945958 [TBL] [Abstract][Full Text] [Related]
10. In vivo and in vitro activation of alveolar macrophages by recombinant interferon-gamma. Black CM; Catterall JR; Remington JS J Immunol; 1987 Jan; 138(2):491-5. PubMed ID: 3098846 [TBL] [Abstract][Full Text] [Related]
11. Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Oudard S; Boitier E; Miccoli L; Rousset S; Dutrillaux B; Poupon MF Anticancer Res; 1997; 17(3C):1903-11. PubMed ID: 9216643 [TBL] [Abstract][Full Text] [Related]
12. Diminished protein kinase C-activated arachidonate metabolism accompanies rat macrophage differentiation in the lung. Peters-Golden M; McNish RW; Brieland JK; Fantone JC J Immunol; 1990 Jun; 144(11):4320-6. PubMed ID: 2160499 [TBL] [Abstract][Full Text] [Related]
13. Regulation of human erythrocyte metabolism by insulin: cellular distribution of 6-phosphofructo-1-kinase and its implication for red blood cell function. Zancan P; Sola-Penna M Mol Genet Metab; 2005 Nov; 86(3):401-11. PubMed ID: 16102994 [TBL] [Abstract][Full Text] [Related]
14. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro. Hiranruengchok R; Harris C Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290 [TBL] [Abstract][Full Text] [Related]
15. Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation- and progression-linked discriminants of malignancy. Vora S; Halper JP; Knowles DM Cancer Res; 1985 Jul; 45(7):2993-3001. PubMed ID: 3159473 [TBL] [Abstract][Full Text] [Related]
17. The use of acetylated cytochrome c in detecting superoxide anion production in rabbit alveolar macrophages. Nasrallah VN; Shirley PS; Myrvik Q; Waite M J Immunol; 1983 Nov; 131(5):2104-6. PubMed ID: 6313802 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes. Monge C; Beraud N; Tepp K; Pelloux S; Chahboun S; Kaambre T; Kadaja L; Roosimaa M; Piirsoo A; Tourneur Y; Kuznetsov AV; Saks V; Seppet E Can J Physiol Pharmacol; 2009 Apr; 87(4):318-26. PubMed ID: 19370085 [TBL] [Abstract][Full Text] [Related]
19. The influence of thyroxine on intensity of energy metabolism in bone marrow myeloid cells and neutrophilic polymorphonuclear leukocytes of neonatal pig. Babych H; Antonyak H; Sklyarov AY Endocr Regul; 2000 Jun; 34(2):73-81. PubMed ID: 10911408 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of fibre-induced superoxide release from alveolar macrophages and induction of superoxide dismutase in the lungs of rats inhaling crocidolite. Mossman BT; Hansen K; Marsh JP; Brew ME; Hill S; Bergeron M; Petruska J IARC Sci Publ; 1989; (90):81-92. PubMed ID: 2545620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]