These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 19026608)

  • 1. K+ binding in the G-loop and water cavity facilitates Ba2+ movement in the Kir2.1 channel.
    Chang HK; Marton LJ; Liang KK; Shieh RC
    Biochim Biophys Acta; 2009 Feb; 1788(2):500-6. PubMed ID: 19026608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel.
    Shin HG; Xu Y; Lu Z
    J Gen Physiol; 2005 Aug; 126(2):123-35. PubMed ID: 16043774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes.
    Shieh RC; Chang JC; Arreola J
    Biophys J; 1998 Nov; 75(5):2313-22. PubMed ID: 9788926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium permeability and sensitivity induced by mutations in the selectivity filter of the KcsA channel towards Kir channels.
    Raja M; Vales E
    Biochimie; 2010 Mar; 92(3):232-44. PubMed ID: 19962419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a site involved in the block by extracellular Mg(2+) and Ba(2+) as well as permeation of K(+) in the Kir2.1 K(+) channel.
    Murata Y; Fujiwara Y; Kubo Y
    J Physiol; 2002 Nov; 544(3):665-77. PubMed ID: 12411513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes.
    Chang HK; Yeh SH; Shieh RC
    J Physiol; 2003 Nov; 553(Pt 1):101-12. PubMed ID: 12963788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3.
    Ureche ON; Baltaev R; Ureche L; Strutz-Seebohm N; Lang F; Seebohm G
    Cell Physiol Biochem; 2008; 21(5-6):347-56. PubMed ID: 18453743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels.
    Chang HK; Iwamoto M; Oiki S; Shieh RC
    Sci Rep; 2015 Dec; 5():18404. PubMed ID: 26678093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Physiol; 2004 Nov; 561(Pt 1):159-68. PubMed ID: 15459242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ligand-sensitive gate of a potassium channel lies close to the selectivity filter.
    Proks P; Antcliff JF; Ashcroft FM
    EMBO Rep; 2003 Jan; 4(1):70-5. PubMed ID: 12524524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of divalent cation-binding site in the pore of a small conductance Ca(2+)-activated K(+) channel and its role in determining current-voltage relationship.
    Soh H; Park CS
    Biophys J; 2002 Nov; 83(5):2528-38. PubMed ID: 12414687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of rectification in inward-rectifier K+ channels.
    Guo D; Ramu Y; Klem AM; Lu Z
    J Gen Physiol; 2003 Apr; 121(4):261-75. PubMed ID: 12642596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating of the kir2.1 channel at the bundle crossing region by intracellular spermine and other cations.
    Huang CW; Kuo CC
    J Cell Physiol; 2014 Nov; 229(11):1703-21. PubMed ID: 24633623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity.
    Bichet D; Lin YF; Ibarra CA; Huang CS; Yi BA; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4441-6. PubMed ID: 15070737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion selectivity of the Kat1 K+ channel pore.
    Nakamura RL; Gaber RF
    Mol Membr Biol; 2009 Aug; 26(5):293-308. PubMed ID: 19742379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent inhibition of outward Kir2.1 currents by extracellular spermine.
    Chang HK; Shieh RC
    Biochim Biophys Acta; 2013 Feb; 1828(2):765-75. PubMed ID: 22948070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4.
    Lancaster MK; Dibb KM; Quinn CC; Leach R; Lee JK; Findlay JB; Boyett MR
    J Biol Chem; 2000 Nov; 275(46):35831-9. PubMed ID: 10956662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.