BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19026625)

  • 1. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.
    Wang HY; Lu SS; Lun ZR
    Cryobiology; 2009 Feb; 58(1):115-117. PubMed ID: 19026625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation.
    Wowk B; Fahy GM; Ahmedyar S; Taylor MJ; Rabin Y
    Cryobiology; 2018 Jun; 82():70-77. PubMed ID: 29660316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass-forming tendency in the system water-dimethyl sulfoxide.
    Baudot A; Alger L; Boutron P
    Cryobiology; 2000 Mar; 40(2):151-8. PubMed ID: 10788314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution.
    Wang HY; Inada T; Funakoshi K; Lu SS
    Cryobiology; 2009 Aug; 59(1):83-9. PubMed ID: 19454281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitrification enhancement by synthetic ice blocking agents.
    Wowk B; Leitl E; Rasch CM; Mesbah-Karimi N; Harris SB; Fahy GM
    Cryobiology; 2000 May; 40(3):228-36. PubMed ID: 10860622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the assessment of the stability of vitrified cryo-media by differential scanning calorimetry: A new tool for biobanks to derive standard operating procedures for storage, access and transport.
    Kreiner A; Stracke F; Zimmermann H
    Cryobiology; 2019 Aug; 89():26-34. PubMed ID: 31202961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calorimetric Studies on Thermal Properties of Nano-Cryoprotectant Solutions during Vitrification.
    Xu HF; Hao BT; Liu LJ; Tang LL; Liu BL
    Cryo Letters; 2016; 37(6):406-410. PubMed ID: 28072427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of Specific Heat and Crystallization in VS55, DP6, and M22 Cryoprotectant Systems With and Without Sucrose.
    Phatak S; Natesan H; Choi J; Brockbank KGM; Bischof JC
    Biopreserv Biobank; 2018 Aug; 16(4):270-277. PubMed ID: 29958001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal analysis of marginal conditions to facilitate cryopreservation by vitrification using a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2019 Dec; 91():128-136. PubMed ID: 31526802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.
    Drake AC; Lee Y; Burgess EM; Karlsson JOM; Eroglu A; Higgins AZ
    PLoS One; 2018; 13(1):e0190713. PubMed ID: 29304068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DSC Analysis of Thermophysical Properties for Biomaterials and Formulations.
    Sun WQ
    Methods Mol Biol; 2021; 2180():285-302. PubMed ID: 32797416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22.
    Han Z; Gangwar L; Magnuson E; Etheridge ML; Pringle CO; Bischof JC; Choi J
    Cryobiology; 2022 Jun; 106():113-121. PubMed ID: 35276219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation.
    Li DX; Liu BL; Liu YS; Chen CL
    Cryobiology; 2008 Apr; 56(2):114-9. PubMed ID: 18190903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions.
    Mandumpal JB; Kreck CA; Mancera RL
    Phys Chem Chem Phys; 2011 Mar; 13(9):3839-42. PubMed ID: 21206958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A refinement to the liquidus-tracking method for vitreous preservation of articular cartilage.
    Yu XY; Chen GM; Zhang SZ
    Cryo Letters; 2013; 34(3):267-76. PubMed ID: 23812317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems.
    Kilbride P; Morris GJ
    Cryobiology; 2017 Jun; 76():92-97. PubMed ID: 28414045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.
    Lv F; Liu B; Li W; Jaganathan GK
    Cryobiology; 2014 Feb; 68(1):84-90. PubMed ID: 24374134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of temperature at which slow cooling is terminated and of thawing rate on the survival of one-cell mouse embryos frozen in dimethyl sulfoxide or 1,2-propanediol solutions.
    Van den Abbeel E; Van der Elst J; Van Steirteghem AC
    Cryobiology; 1994 Oct; 31(5):423-33. PubMed ID: 7988151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.