These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 1902671)

  • 41. Comparative studies on aldose reductase from bovine, rat and human lens.
    Conrad SM; Doughty CC
    Biochim Biophys Acta; 1982 Nov; 708(3):348-57. PubMed ID: 6816289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Xylose reductase from the Basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization, and detailed analysis of the substrate binding pocket using structure-activity relationships.
    Mayr P; Petschacher B; Nidetzky B
    J Biochem; 2003 Apr; 133(4):553-62. PubMed ID: 12761304
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hyperglycemia-induced activation of human erythrocyte aldose reductase and alterations in kinetic properties.
    Srivastava SK; Ansari NH; Hair GA; Jaspan J; Rao MB; Das B
    Biochim Biophys Acta; 1986 Mar; 870(2):302-11. PubMed ID: 3082363
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Substrate specificity of reduced and oxidized forms of human aldose reductase.
    Vander Jagt DL; Hunsaker LA
    Adv Exp Med Biol; 1993; 328():279-88. PubMed ID: 8493905
    [No Abstract]   [Full Text] [Related]  

  • 45. Kinetics and mechanism of action of aldehyde reductase from pig kidney.
    Davidson WS; Flynn TG
    Biochem J; 1979 Feb; 177(2):595-601. PubMed ID: 35157
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aldose and aldehyde reductases from human kidney cortex and medulla.
    Robinson B; Hunsaker LA; Stangebye LA; Vander Jagt DL
    Biochim Biophys Acta; 1993 Dec; 1203(2):260-6. PubMed ID: 8268209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase.
    Rondeau JM; TĂȘte-Favier F; Podjarny A; Reymann JM; Barth P; Biellmann JF; Moras D
    Nature; 1992 Jan; 355(6359):469-72. PubMed ID: 1734286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
    Auiyawong B; Narawongsanont R; Tantitadapitak C
    Protein J; 2017 Aug; 36(4):257-269. PubMed ID: 28699078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyol-pathway enzymes of human brain. Partial purification and properties of aldose reductase and hexonate dehydrogenase.
    O'Brien MM; Schofield PJ
    Biochem J; 1980 Apr; 187(1):21-30. PubMed ID: 6773519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of reduced nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductase in a Rhodotorula strain.
    Watson JA; Hayashi JA; Schuytema E; Doughty CC
    J Bacteriol; 1969 Oct; 100(1):110-6. PubMed ID: 4390502
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Regulation of aldose reductase activity. Mechanism of action of an activated form of the enzyme].
    Pavlov AR; Vartanov SS; Iaropolov AI
    Biokhimiia; 1992 Mar; 57(3):378-88. PubMed ID: 1344193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of lysine residues in the nucleotides binding to bovine liver high-Km aldehyde reductase.
    Terada T
    Int J Biochem Cell Biol; 1995 May; 27(5):457-67. PubMed ID: 7641075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activators and inhibitors of lens aldose reductase.
    Jedziniak JA; Kinoshita JH
    Invest Ophthalmol; 1971 May; 10(5):357-66. PubMed ID: 4397412
    [No Abstract]   [Full Text] [Related]  

  • 54. Disruption of aldehyde reductase increases group size in dictyostelium.
    Ehrenman K; Yang G; Hong WP; Gao T; Jang W; Brock DA; Hatton RD; Shoemaker JD; Gomer RH
    J Biol Chem; 2004 Jan; 279(2):837-47. PubMed ID: 14551196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple graphical methods for use with complex ligand-binding and enzyme mechanisms.
    Crabbe MJ
    FEBS Lett; 1988 Aug; 235(1-2):183-8. PubMed ID: 3136033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stopped-flow studies of human aldose reductase reveal which enzyme form predominates during steady-state turnover in either reaction direction.
    Grimshaw CE; Lai CJ
    Adv Exp Med Biol; 1995; 372():229-40. PubMed ID: 7484383
    [No Abstract]   [Full Text] [Related]  

  • 57. Characterization of the covalent mercury (II)-NADPH complex.
    Marshall JL; Booth JE; Williams JW
    J Biol Chem; 1984 Mar; 259(5):3033-6. PubMed ID: 6699007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts.
    Grimshaw CE
    Biochemistry; 1992 Oct; 31(42):10139-45. PubMed ID: 1420136
    [No Abstract]   [Full Text] [Related]  

  • 59. Enantiospecific change in products for aldose reductase-mediated reaction of glyceraldehyde with bound NADP+.
    Grimshaw CE
    Biochem Biophys Res Commun; 1991 Mar; 175(3):943-8. PubMed ID: 1902671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spectroscopic and kinetic characterization of nonenzymic and aldose reductase mediated covalent NADP-glycolaldehyde adduct formation.
    Grimshaw CE; Shahbaz M; Putney CG
    Biochemistry; 1990 Oct; 29(42):9936-46. PubMed ID: 2125485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.