These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19026711)

  • 1. Modelling evolutionary cell behaviour using neural networks: application to tumour growth.
    Gerlee P; Anderson AR
    Biosystems; 2009 Feb; 95(2):166-74. PubMed ID: 19026711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evolutionary hybrid cellular automaton model of solid tumour growth.
    Gerlee P; Anderson AR
    J Theor Biol; 2007 Jun; 246(4):583-603. PubMed ID: 17374383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of cell motility in an individual-based model of tumour growth.
    Gerlee P; Anderson AR
    J Theor Biol; 2009 Jul; 259(1):67-83. PubMed ID: 19285513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype.
    Gerlee P; Anderson AR
    J Theor Biol; 2008 Feb; 250(4):705-22. PubMed ID: 18068192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model.
    Powathil GG; Gordon KE; Hill LA; Chaplain MA
    J Theor Biol; 2012 Sep; 308():1-19. PubMed ID: 22659352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging scales in cancer progression: mapping genotype to phenotype using neural networks.
    Gerlee P; Kim E; Anderson AR
    Semin Cancer Biol; 2015 Feb; 30():30-41. PubMed ID: 24830623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of evolvability in gene regulatory networks.
    Crombach A; Hogeweg P
    PLoS Comput Biol; 2008 Jul; 4(7):e1000112. PubMed ID: 18617989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.
    Cai Y; Xu S; Wu J; Long Q
    J Theor Biol; 2011 Jun; 279(1):90-101. PubMed ID: 21392511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.
    Andasari V; Roper RT; Swat MH; Chaplain MA
    PLoS One; 2012; 7(3):e33726. PubMed ID: 22461894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid computational model for the effects of maspin on cancer cell dynamics.
    Al-Mamun MA; Brown LJ; Hossain MA; Fall C; Wagstaff L; Bass R
    J Theor Biol; 2013 Nov; 337():150-60. PubMed ID: 23988797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microenvironment driven invasion: a multiscale multimodel investigation.
    Anderson AR; Rejniak KA; Gerlee P; Quaranta V
    J Math Biol; 2009 Apr; 58(4-5):579-624. PubMed ID: 18839176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of behaviour transitions in tumour growth using a cellular automaton simulation.
    Santos J; Monteagudo Á
    IET Syst Biol; 2015 Jun; 9(3):75-87. PubMed ID: 26021328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational framework for modelling solid tumour growth.
    Lloyd BA; Szczerba D; Rudin M; Székely G
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3301-18. PubMed ID: 18593664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours.
    Shrestha SM; Joldes GR; Wittek A; Miller K
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):542-59. PubMed ID: 23382053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-scale agent-based model for avascular tumour growth.
    Sadhukhan S; Mishra PK; Basu SK; Mandal JK
    Biosystems; 2021 Aug; 206():104450. PubMed ID: 34098060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural network model for the evolution of learning in changing environments.
    Kozielska M; Weissing FJ
    PLoS Comput Biol; 2024 Jan; 20(1):e1011840. PubMed ID: 38289971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis.
    Vilanova G; Burés M; Colominas I; Gomez H
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30185542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of multicellularity by collective integration of spatial information.
    Colizzi ES; Vroomans RM; Merks RM
    Elife; 2020 Oct; 9():. PubMed ID: 33064078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.