These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. Kannan V; Sureendar R J Basic Microbiol; 2009 Apr; 49(2):158-64. PubMed ID: 18792056 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. Flores-Vargas RD; O'Hara GW J Appl Microbiol; 2006 May; 100(5):946-54. PubMed ID: 16629995 [TBL] [Abstract][Full Text] [Related]
8. Soil suppressiveness to Rhizoctonia solani and microbial diversity. Bakker Y; Van Loon FM; Schneider JH Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155 [TBL] [Abstract][Full Text] [Related]
9. Impact of two bacterial biocontrol agents on bacterial and fungal culturable groups associated with the roots of field-grown maize. Pereira P; Nesci A; Etcheverry M Lett Appl Microbiol; 2009 Apr; 48(4):493-9. PubMed ID: 19292823 [TBL] [Abstract][Full Text] [Related]
12. Transgenic potato plants expressing antimicrobial activity: establishment of pest control and environmental safety. Wackernagel W; Düring K Forum Nutr; 2003; 56():317-8. PubMed ID: 15806917 [No Abstract] [Full Text] [Related]
13. Metagenomics revealed a quorum quenching lactonase QlcA from yet unculturable soil bacteria. Riaz K; Elmerich C; Raffoux A; Moreira D; Dessaux Y; Faure D Commun Agric Appl Biol Sci; 2008; 73(2):3-6. PubMed ID: 19226736 [TBL] [Abstract][Full Text] [Related]
14. [Mathematic modeling of the dynamics of the interacting population of the rhizosphere microorganisms]. Kravchenko LV; Strigul' NS; Shvytov IA Mikrobiologiia; 2004; 73(2):233-40. PubMed ID: 15198036 [TBL] [Abstract][Full Text] [Related]
15. [Influence of supplement of agricultural useful strains of microorganisms on microbial coenobia of plant rhizosphere]. Sherstoboieva OV Mikrobiol Z; 2003; 65(6):43-8. PubMed ID: 15077548 [TBL] [Abstract][Full Text] [Related]
16. Selection of potential antagonists against asparagus crown and root rot caused by Fusarium spp. Rubio-Pérez E; Molinero-Ruiz ML; Melero-Vara JM; Basallote-Ureba MJ Commun Agric Appl Biol Sci; 2008; 73(2):203-6. PubMed ID: 19226757 [TBL] [Abstract][Full Text] [Related]
18. Root secretions: from genes and molecules to microbial associations. Biedrzycki ML; Bais HP J Exp Bot; 2009; 60(6):1533-4. PubMed ID: 19386613 [No Abstract] [Full Text] [Related]
19. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. Kyselková M; Kopecký J; Frapolli M; Défago G; Ságová-Marecková M; Grundmann GL; Moënne-Loccoz Y ISME J; 2009 Oct; 3(10):1127-38. PubMed ID: 19554036 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]