These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 19027073)

  • 1. Age-related changes in modular organization of human brain functional networks.
    Meunier D; Achard S; Morcom A; Bullmore E
    Neuroimage; 2009 Feb; 44(3):715-23. PubMed ID: 19027073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular structure of functional networks in olfactory memory.
    Meunier D; Fonlupt P; Saive AL; Plailly J; Ravel N; Royet JP
    Neuroimage; 2014 Jul; 95():264-75. PubMed ID: 24662576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular organization of functional brain networks in patients with degenerative cervical myelopathy.
    Shao Z; Tan Y; Zhan Y; He L
    Sci Rep; 2024 Apr; 14(1):8593. PubMed ID: 38615051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligence is associated with the modular structure of intrinsic brain networks.
    Hilger K; Ekman M; Fiebach CJ; Basten U
    Sci Rep; 2017 Nov; 7(1):16088. PubMed ID: 29167455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topographical maps as complex networks.
    da Fontoura Costa L; Diambra L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021901. PubMed ID: 15783346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic reconfiguration of human brain networks during learning.
    Bassett DS; Wymbs NF; Porter MA; Mucha PJ; Carlson JM; Grafton ST
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7641-6. PubMed ID: 21502525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle.
    Tagliazucchi E; von Wegner F; Morzelewski A; Brodbeck V; Borisov S; Jahnke K; Laufs H
    Neuroimage; 2013 Apr; 70():327-39. PubMed ID: 23313420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization in complex networks with a modular structure.
    Park K; Lai YC; Gupte S; Kim JW
    Chaos; 2006 Mar; 16(1):015105. PubMed ID: 16599771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in whole-brain functional networks and memory performance in aging.
    Sala-Llonch R; Junqué C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Valls-Pedret C; Palacios EM; Domènech S; Salvà A; Bargalló N; Bartrés-Faz D
    Neurobiol Aging; 2014 Oct; 35(10):2193-202. PubMed ID: 24814675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks.
    Grady C; Sarraf S; Saverino C; Campbell K
    Neurobiol Aging; 2016 May; 41():159-172. PubMed ID: 27103529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI.
    Chen ZJ; He Y; Rosa-Neto P; Germann J; Evans AC
    Cereb Cortex; 2008 Oct; 18(10):2374-81. PubMed ID: 18267952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular and hierarchically modular organization of brain networks.
    Meunier D; Lambiotte R; Bullmore ET
    Front Neurosci; 2010; 4():200. PubMed ID: 21151783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike signal transmission between modules and the predictability of spike activity in modular neuronal networks.
    Yuan Y; Liu J; Zhao P; Huo H; Fang T
    J Theor Biol; 2021 Oct; 526():110811. PubMed ID: 34133949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered modular organization of intrinsic brain functional networks in patients with Parkinson's disease.
    Ma Q; Huang B; Wang J; Seger C; Yang W; Li C; Wang J; Feng J; Weng L; Jiang W; Huang R
    Brain Imaging Behav; 2017 Apr; 11(2):430-443. PubMed ID: 26860909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.
    Kaushal M; Oni-Orisan A; Chen G; Li W; Leschke J; Ward D; Kalinosky B; Budde M; Schmit B; Li SJ; Muqeet V; Kurpad S
    Brain Connect; 2017 Sep; 7(7):413-423. PubMed ID: 28657334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of directed transfer function and network formalism for the assessment of functional connectivity in working memory task.
    Blinowska KJ; Kamiński M; Brzezicka A; Kamiński J
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1997):20110614. PubMed ID: 23858482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal Changes in the Cerebral Cortex Functional Organization of Healthy Elderly.
    Chong JSX; Ng KK; Tandi J; Wang C; Poh JH; Lo JC; Chee MWL; Zhou JH
    J Neurosci; 2019 Jul; 39(28):5534-5550. PubMed ID: 31109962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.