These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 19027073)

  • 21. Complex modular structure of large-scale brain networks.
    Valencia M; Pastor MA; Fernández-Seara MA; Artieda J; Martinerie J; Chavez M
    Chaos; 2009 Jun; 19(2):023119. PubMed ID: 19566254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale white matter network reorganization in posttraumatic stress disorder.
    Suo X; Lei D; Li W; Chen F; Niu R; Kuang W; Huang X; Lui S; Li L; Sweeney JA; Gong Q
    Hum Brain Mapp; 2019 Nov; 40(16):4801-4812. PubMed ID: 31365184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entrainment of randomly coupled oscillator networks by a pacemaker.
    Kori H; Mikhailov AS
    Phys Rev Lett; 2004 Dec; 93(25):254101. PubMed ID: 15697897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of brain functional connectivity network in MS patients constructed by modular structure of sparse weights from cognitive task-related fMRI.
    Miri Ashtiani SN; Behnam H; Daliri MR; Hossein-Zadeh GA; Mehrpour M
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):921-938. PubMed ID: 31452057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain modularity controls the critical behavior of spontaneous activity.
    Russo R; Herrmann HJ; de Arcangelis L
    Sci Rep; 2014 Mar; 4():4312. PubMed ID: 24621482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modular topology emerges from plasticity in a minimalistic excitable network model.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Chaos; 2017 Apr; 27(4):047406. PubMed ID: 28456166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia.
    Alexander-Bloch A; Lambiotte R; Roberts B; Giedd J; Gogtay N; Bullmore E
    Neuroimage; 2012 Feb; 59(4):3889-900. PubMed ID: 22119652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic overlapping modular organization of human brain functional networks revealed by a multiobjective evolutionary algorithm.
    Lin Y; Ma J; Gu Y; Yang S; Li LMW; Dai Z
    Neuroimage; 2018 Nov; 181():430-445. PubMed ID: 30005918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical modularity in human brain functional networks.
    Meunier D; Lambiotte R; Fornito A; Ersche KD; Bullmore ET
    Front Neuroinform; 2009; 3():37. PubMed ID: 19949480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of intermodular connection on fast sparse synchronization in clustered small-world neural networks.
    Kim SY; Lim W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052716. PubMed ID: 26651732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of a randomly grown 2-d network.
    Ajazi F; Napolitano GM; Turova T; Zaurbek I
    Biosystems; 2015 Oct; 136():105-12. PubMed ID: 26375356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconfiguration of brain network architecture to support executive control in aging.
    Gallen CL; Turner GR; Adnan A; D'Esposito M
    Neurobiol Aging; 2016 Aug; 44():42-52. PubMed ID: 27318132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aging-Related Modular Architectural Reorganization of the Metabolic Brain Network.
    Huang Q; Ren S; Zhang T; Li J; Jiang D; Xiao J; Hua F; Xie F; Guan Y
    Brain Connect; 2022 Jun; 12(5):432-442. PubMed ID: 34210172
    [No Abstract]   [Full Text] [Related]  

  • 34. Exploring brain functional plasticity in world class gymnasts: a network analysis.
    Wang J; Lu M; Fan Y; Wen X; Zhang R; Wang B; Ma Q; Song Z; He Y; Wang J; Huang R
    Brain Struct Funct; 2016 Sep; 221(7):3503-19. PubMed ID: 26420277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan.
    Davison EN; Turner BO; Schlesinger KJ; Miller MB; Grafton ST; Bassett DS; Carlson JM
    PLoS Comput Biol; 2016 Nov; 12(11):e1005178. PubMed ID: 27880785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Individual differences and time-varying features of modular brain architecture.
    Liao X; Cao M; Xia M; He Y
    Neuroimage; 2017 May; 152():94-107. PubMed ID: 28242315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-year development of modules and hubs in infant brain functional networks.
    Wen X; Zhang H; Li G; Liu M; Yin W; Lin W; Zhang J; Shen D
    Neuroimage; 2019 Jan; 185():222-235. PubMed ID: 30315911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-dependent changes in task-based modular organization of the human brain.
    Schlesinger KJ; Turner BO; Lopez BA; Miller MB; Carlson JM
    Neuroimage; 2017 Feb; 146():741-762. PubMed ID: 27596025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Modular Organization of Pain Brain Networks: An fMRI Graph Analysis Informed by Intracranial EEG.
    Fauchon C; Meunier D; Faillenot I; Pomares FB; Bastuji H; Garcia-Larrea L; Peyron R
    Cereb Cortex Commun; 2020; 1(1):tgaa088. PubMed ID: 34296144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI.
    Chen ZJ; He Y; Rosa-Neto P; Gong G; Evans AC
    Neuroimage; 2011 May; 56(1):235-45. PubMed ID: 21238595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.