These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19027074)

  • 1. Modeling neuro-vascular coupling in rat cerebellum: characterization of deviations from linearity.
    Rasmussen T; Holstein-Rathlou NH; Lauritzen M
    Neuroimage; 2009 Mar; 45(1):96-108. PubMed ID: 19027074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further nonlinearities in neurovascular coupling in rodent barrel cortex.
    Hewson-Stoate N; Jones M; Martindale J; Berwick J; Mayhew J
    Neuroimage; 2005 Jan; 24(2):565-74. PubMed ID: 15627599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long duration stimuli and nonlinearities in the neural-haemodynamic coupling.
    Martindale J; Berwick J; Martin C; Kong Y; Zheng Y; Mayhew J
    J Cereb Blood Flow Metab; 2005 May; 25(5):651-61. PubMed ID: 15703699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of linear coupling between single-event blood flow responses and interictal discharges in a model of experimental epilepsy.
    Vanzetta I; Flynn C; Ivanov AI; Bernard C; BĂ©nar CG
    J Neurophysiol; 2010 Jun; 103(6):3139-52. PubMed ID: 20457851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context sensitivity of activity-dependent increases in cerebral blood flow.
    Caesar K; Gold L; Lauritzen M
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):4239-44. PubMed ID: 12655065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats.
    Tonnesen J; Pryds A; Larsen EH; Paulson OB; Hauerberg J; Knudsen GM
    Exp Physiol; 2005 May; 90(3):349-55. PubMed ID: 15653714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hemodynamic impulse response to a single neural event.
    Martindale J; Mayhew J; Berwick J; Jones M; Martin C; Johnston D; Redgrave P; Zheng Y
    J Cereb Blood Flow Metab; 2003 May; 23(5):546-55. PubMed ID: 12771569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods.
    Obrenovitch TP; Chen S; Farkas E
    Neuroimage; 2009 Mar; 45(1):68-74. PubMed ID: 19100842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic modeling of renal blood flow in Dahl hypertensive and normotensive rats.
    Knudsen T; Elmer H; Knudsen MH; Holstein-Rathlou NH; Stoustrup J
    IEEE Trans Biomed Eng; 2004 May; 51(5):689-97. PubMed ID: 15132494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation.
    Paul JS; Al Nashash H; Luft AR; Le TM
    Ann Biomed Eng; 2006 Jul; 34(7):1107-18. PubMed ID: 16786397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum.
    Thomsen K; Offenhauser N; Lauritzen M
    J Physiol; 2004 Oct; 560(Pt 1):181-9. PubMed ID: 15272036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear correlation between field potential and local cerebral blood flow in rat somatosensory cortex evoked by changing the stimulus current.
    Ureshi M; Kershaw J; Kanno I
    Neurosci Res; 2005 Feb; 51(2):139-45. PubMed ID: 15681031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodological study investigating long term laser Doppler measured cerebral blood flow changes in a permanently occluded rat stroke model.
    Eve DJ; Musso J; Park DH; Oliveira C; Pollock K; Hope A; Baradez MO; Sinden JD; Sanberg PR
    J Neurosci Methods; 2009 May; 180(1):52-6. PubMed ID: 19427529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal evolution of the CBV-fMRI signal to rat whisker stimulation of variable duration and intensity: a linearity analysis.
    Lu H; Soltysik DA; Ward BD; Hyde JS
    Neuroimage; 2005 Jun; 26(2):432-40. PubMed ID: 15907301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of transient renal autoregulatory mechanisms using time-frequency spectral techniques.
    Wang H; Siu K; Ju K; Moore LC; Chon KH
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1033-9. PubMed ID: 15977733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain activity affects dynamic but not static autoregulation.
    Rosengarten B; Hecht M; Kaps M
    Exp Neurol; 2007 May; 205(1):201-6. PubMed ID: 17400212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring.
    de Mul FF; Morales F; Smit AJ; Graaff R
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):184-90. PubMed ID: 15709655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the efficacy of linear system analysis of renal autoregulation in rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marsh DJ; Marmarelis VZ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):8-20. PubMed ID: 8468079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-compartment model of the hemodynamic response and oxygen delivery to brain.
    Zheng Y; Johnston D; Berwick J; Chen D; Billings S; Mayhew J
    Neuroimage; 2005 Dec; 28(4):925-39. PubMed ID: 16061400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.