BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19027118)

  • 21. Heat exchanges in fast, high-performance liquid chromatography. A complete thermodynamic study.
    Gritti F; Guiochon G
    Anal Chem; 2008 Sep; 80(17):6488-99. PubMed ID: 18690696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of dual gradient column in liquid chromatography.
    Oda T; Kitagawa S; Ohtani H
    J Chromatogr A; 2006 Feb; 1105(1-2):154-8. PubMed ID: 16185701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consequences of the radial heterogeneity of the column temperature at high mobile phase velocity.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Sep; 1166(1-2):47-60. PubMed ID: 17720174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass transfer equation for proteins in very high-pressure liquid chromatography.
    Gritti F; Guiochon G
    Anal Chem; 2009 Apr; 81(7):2723-36. PubMed ID: 19256515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient chromatography under constant frictional heat: realization and application.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 May; 1289():1-12. PubMed ID: 23566917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The change of pressure drop during large-scale chromatography of viscous samples.
    Felinger A; Guiochon G
    Biotechnol Prog; 1993; 9(5):450-5. PubMed ID: 7764161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling of thermal processes in high pressure liquid chromatography: I. Low pressure onset of thermal heterogeneity.
    Kaczmarski K; Kostka J; Zapała W; Guiochon G
    J Chromatogr A; 2009 Sep; 1216(38):6560-74. PubMed ID: 19640545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: a thermodynamic interpretation.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Jan; 1216(1):63-78. PubMed ID: 19054520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature.
    Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P
    Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of a protein band profile in preparative reversed-phase gradient elution chromatography.
    El Fallah MZ; Guiochon G
    Biotechnol Bioeng; 1992 Apr; 39(8):877-85. PubMed ID: 18601022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Band profiles of reacting acido-basic compounds with water-methanol eluents at different SWpHs and ionic strengths in reversed-phase liquid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Apr; 1216(15):3175-84. PubMed ID: 19237162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of peptides from myoglobin enzymatic digests by RPLC. Influence of the mobile-phase composition and the pressure on the retention and separation.
    Marchetti N; Guiochon G
    Anal Chem; 2005 Jun; 77(11):3425-30. PubMed ID: 15924371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential advantage of constant pressure versus constant flow gradient chromatography for the analysis of small molecules.
    Gritti F; Stankovich JJ; Guiochon G
    J Chromatogr A; 2012 Nov; 1263():51-60. PubMed ID: 23040976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Column equilibration effects in gradient elution in reversed-phase liquid chromatography.
    Pappa-Louisi A; Nikitas P; Agrafiotou P
    J Chromatogr A; 2006 Sep; 1127(1-2):97-107. PubMed ID: 16797559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of thermal heterogeneity in hydrophobic interaction chromatography.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Sep; 1216(39):6716-27. PubMed ID: 19698947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fundamental equation of dual-mode gradient elution in liquid chromatography involving simultaneous changes in flow rate and mobile-phase composition.
    Pappa-Louisi A; Nikitas P; Balkatzopoulou P; Louizis G
    Anal Chem; 2007 May; 79(10):3888-93. PubMed ID: 17444616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation.
    Schellinger AP; Carr PW
    J Chromatogr A; 2006 Mar; 1109(2):253-66. PubMed ID: 16460742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linear velocity surge caused by mobile-phase compression as a source of band broadening in isocratic ultrahigh-pressure liquid chromatography.
    Jerkovich AD; Mellors JS; Thompson JW; Jorgenson JW
    Anal Chem; 2005 Oct; 77(19):6292-9. PubMed ID: 16194091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.