These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19027217)

  • 41. [Efficacy of ferrate oxidation and hydrolyze remnant activated sludge].
    Wang L; Ma J; Liu TZ; Li CM; Zhang HY
    Huan Jing Ke Xue; 2011 Jul; 32(7):2019-22. PubMed ID: 21922824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formaldehyde removal from wastewater and air by using UV, ferrate(VI) and UV/ferrate(VI).
    Talaiekhozani A; Salari M; Talaei MR; Bagheri M; Eskandari Z
    J Environ Manage; 2016 Dec; 184(Pt 2):204-209. PubMed ID: 27717675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of iron oxide nanomaterials in wastewater treatment: a review.
    Xu P; Zeng GM; Huang DL; Feng CL; Hu S; Zhao MH; Lai C; Wei Z; Huang C; Xie GX; Liu ZF
    Sci Total Environ; 2012 May; 424():1-10. PubMed ID: 22391097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of sulfapyridine by ferrate(VI): efficiency, influencing factors and oxidation pathway.
    Deng J; Wu H; Wang S; Liu Y; Wang H
    Environ Technol; 2019 May; 40(12):1585-1591. PubMed ID: 29319425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradability of chlorophenol wastewater enhanced by solar photo-Fenton process.
    Kuo WS; Lin IT
    Water Sci Technol; 2009; 59(5):973-8. PubMed ID: 19273896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Degradability of chlorophenols using ferrate(VI) in contaminated groundwater.
    Homolková M; Hrabák P; Kolář M; Černík M
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1408-13. PubMed ID: 26370812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidation of inorganic contaminants by ferrates (VI, V, and IV)--kinetics and mechanisms: a review.
    Sharma VK
    J Environ Manage; 2011 Apr; 92(4):1051-73. PubMed ID: 21193263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of toxic metals using ferrate(VI): a review.
    Dong S; Mu Y; Sun X
    Water Sci Technol; 2019 Oct; 80(7):1213-1225. PubMed ID: 31850873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pre-treatment and bioconversion of wastewater sludge to value-added products--fate of endocrine disrupting compounds.
    Barnabé S; Brar SK; Tyagi RD; Beauchesne I; Surampalli RY
    Sci Total Environ; 2009 Feb; 407(5):1471-88. PubMed ID: 19110297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of multicriteria decision analysis to jar-test results for chemicals selection in the physical-chemical treatment of textile wastewater.
    Aragonés-Beltrán P; Mendoza-Roca JA; Bes-Piá A; García-Melón M; Parra-Ruiz E
    J Hazard Mater; 2009 May; 164(1):288-95. PubMed ID: 18829168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment.
    Sirtori C; Zapata A; Oller I; Gernjak W; Agüera A; Malato S
    Water Res; 2009 Feb; 43(3):661-8. PubMed ID: 19046757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing ferrate(VI) oxidation process to remove blue 203 from wastewater utilizing MgO nanoparticles.
    Eskandari Z; Talaiekhozani A; Talaie MR; Banisharif F
    J Environ Manage; 2019 Feb; 231():297-302. PubMed ID: 30359895
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decolorizing textile wastewater with Fenton's reagent electrogenerated with a solar photovoltaic cell.
    Figueroa S; Vázquez L; Alvarez-Gallegos A
    Water Res; 2009 Feb; 43(2):283-94. PubMed ID: 18977506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Treatment of combined sewer overflows using ferrate (VI).
    Gandhi R; Ray AK; Sharma VK; Nakhla G
    Water Environ Res; 2014 Nov; 86(11):2202-11. PubMed ID: 25509525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of chemical and enzymatic treatments on the hydrolysis of swine wastewater.
    Lee YH; Chung YC; Jung JY
    Water Sci Technol; 2008; 58(7):1529-34. PubMed ID: 18957769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment.
    Zheng L; Deng Y
    Water Res; 2016 Apr; 93():172-178. PubMed ID: 26900976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Treatment of yellow water by membrane separations and advanced oxidation methods.
    Lazarova Z; Spendlingwimmer R
    Water Sci Technol; 2008; 58(2):419-26. PubMed ID: 18701795
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Winery wastewater treatment by a combined process: long term aerated storage and Fenton's reagent.
    Lucas MS; Mouta M; Pirra A; Peres JA
    Water Sci Technol; 2009; 60(4):1089-95. PubMed ID: 19700849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant.
    Almubaddal F; Alrumaihi K; Ajbar A
    J Hazard Mater; 2009 Jan; 161(1):431-8. PubMed ID: 18471966
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Complex technology for water and wastewater disinfection and its industrial realization in prototype unit].
    Arakcheev EN; Brunman VE; Brunman MV; Konyashin AV; Dyachenko VA; Petkova AP
    Gig Sanit; 2017; 96(2):137-43. PubMed ID: 29446597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.