BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19027240)

  • 1. Markers involved in resistance to cytotoxics and targeted therapeutics in pancreatic cancer.
    El Maalouf G; Le Tourneau C; Batty GN; Faivre S; Raymond E
    Cancer Treat Rev; 2009 Apr; 35(2):167-74. PubMed ID: 19027240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming drug resistance in pancreatic cancer.
    Long J; Zhang Y; Yu X; Yang J; LeBrun DG; Chen C; Yao Q; Li M
    Expert Opin Ther Targets; 2011 Jul; 15(7):817-28. PubMed ID: 21391891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular targeted approaches for treatment of pancreatic cancer.
    Huang ZQ; Saluja AK; Dudeja V; Vickers SM; Buchsbaum DJ
    Curr Pharm Des; 2011; 17(21):2221-38. PubMed ID: 21777178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERAP2 as a potential biomarker for predicting gemcitabine response in patients with pancreatic cancer.
    Yu P; Luo S; Cai J; Li J; Peng C
    Aging (Albany NY); 2022 Oct; 14(19):7941-7958. PubMed ID: 36214762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SRPX2 boosts pancreatic cancer chemoresistance by activating PI3K/AKT axis.
    Gao Z; Wu J; Wu X; Zheng J; Ou Y
    Open Med (Wars); 2020; 15(1):1072-1082. PubMed ID: 33336063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitating the Cellular Accumulation of Pt-Based Chemotherapeutic Drugs.
    Lambert IH; Sørensen BH
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30071606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells.
    Turchan WT; Shapiro RH; Sevigny GV; Chin-Sinex H; Pruden B; Mendonca MS
    Int J Radiat Biol; 2016 Aug; 92(8):427-33. PubMed ID: 27258472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channels and transporters in the development of drug resistance in cancer cells.
    Hoffmann EK; Lambert IH
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1638):20130109. PubMed ID: 24493757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of tumour cells with their microenvironment: ion channels and cell adhesion molecules. A focus on pancreatic cancer.
    Arcangeli A; Crociani O; Bencini L
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1638):20130101. PubMed ID: 24493749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mucins and pancreatic cancer.
    Jonckheere N; Skrypek N; Van Seuningen I
    Cancers (Basel); 2010 Oct; 2(4):1794-812. PubMed ID: 24281201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy.
    Tamburrino A; Piro G; Carbone C; Tortora G; Melisi D
    Front Pharmacol; 2013; 4():56. PubMed ID: 23641216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucin-based targeted pancreatic cancer therapy.
    Torres MP; Chakraborty S; Souchek J; Batra SK
    Curr Pharm Des; 2012; 18(17):2472-81. PubMed ID: 22372499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myxoma virus sensitizes cancer cells to gemcitabine and is an effective oncolytic virotherapeutic in models of disseminated pancreatic cancer.
    Wennier ST; Liu J; Li S; Rahman MM; Mona M; McFadden G
    Mol Ther; 2012 Apr; 20(4):759-68. PubMed ID: 22233582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emodin reverses gemcitabine resistance in pancreatic cancer cells via the mitochondrial apoptosis pathway in vitro.
    Liu DL; Bu H; Li H; Chen H; Guo HC; Wang ZH; Tong HF; Ni ZL; Liu HB; Lin SZ
    Int J Oncol; 2012 Apr; 40(4):1049-57. PubMed ID: 22159556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gemcitabine Cytotoxicity: Interaction of Efflux and Deamination.
    Rudin D; Li L; Niu N; Kalari KR; Gilbert JA; Ames MM; Wang L
    J Drug Metab Toxicol; 2011 Feb; 2(107):1-10. PubMed ID: 21804948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy.
    Lister A; Nedjadi T; Kitteringham NR; Campbell F; Costello E; Lloyd B; Copple IM; Williams S; Owen A; Neoptolemos JP; Goldring CE; Park BK
    Mol Cancer; 2011 Apr; 10():37. PubMed ID: 21489257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies.
    Torres MP; Ponnusamy MP; Chakraborty S; Smith LM; Das S; Arafat HA; Batra SK
    Mol Cancer Ther; 2010 May; 9(5):1419-31. PubMed ID: 20423995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies.
    Mimeault M; Johansson SL; Senapati S; Momi N; Chakraborty S; Batra SK
    Cancer Lett; 2010 Sep; 295(1):69-84. PubMed ID: 20303649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel therapies against aggressive and recurrent epithelial cancers by molecular targeting tumor- and metastasis-initiating cells and their progenies.
    Mimeault M; Batra SK
    Anticancer Agents Med Chem; 2010 Feb; 10(2):137-51. PubMed ID: 20184544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted drug delivery in pancreatic cancer.
    Yu X; Zhang Y; Chen C; Yao Q; Li M
    Biochim Biophys Acta; 2010 Jan; 1805(1):97-104. PubMed ID: 19853645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.