These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1902747)

  • 1. Mycoplasma contamination greatly enhances the apparent transport and concentrative accumulation of formycin B by mammalian cell culture.
    Plagemann PG
    Biochim Biophys Acta; 1991 Apr; 1064(1):162-4. PubMed ID: 1902747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-dependent, active nucleoside transport in mouse spleen lymphocytes, leukemia cells, fibroblasts and macrophages, but not in equivalent human or pig cells; dipyridamole enhances nucleoside salvage by cells with both active and facilitated transport.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Jun; 1025(1):32-42. PubMed ID: 2369575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-dependent, active nucleoside transport in S49 mouse lymphoma cells and loss in AE-1 mutant deficient in facilitated nucleoside transport.
    Plagemann PG
    J Cell Biochem; 1991 May; 46(1):54-9. PubMed ID: 1874800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of 2',2'-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells.
    Burke T; Lee S; Ferguson PJ; Hammond JR
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1333-40. PubMed ID: 9732397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Na(+)-dependent, active nucleoside transport in rat and mouse peritoneal macrophages, a mouse macrophage cell line and normal rat kidney cells.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Oct; 1028(3):289-98. PubMed ID: 2223800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-dependent, concentrative nucleoside transport in Walker 256 rat carcinosarcoma cells.
    Crawford CR; Belt JA
    Biochem Biophys Res Commun; 1991 Mar; 175(3):846-51. PubMed ID: 2025258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-dependent, concentrative nucleoside transport in rat macrophages. Specificity for natural nucleosides and nucleoside analogs, including dideoxynucleosides, and comparison of nucleoside transport in rat, mouse and human macrophages.
    Plagemann PG
    Biochem Pharmacol; 1991 Jul; 42(2):247-52. PubMed ID: 1859446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of formycin B as a general substrate for measuring facilitated nucleoside transport in mammalian cells.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1989 Jan; 1010(1):7-15. PubMed ID: 2909251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na(+)-dependent, active and Na(+)-independent, facilitated transport of formycin B in mouse spleen lymphocytes.
    Plagemann PG; Aran JM; Woffendin C
    Biochim Biophys Acta; 1990 Feb; 1022(1):93-102. PubMed ID: 2302407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of equilibrative and concentrative Na+-dependent (cif) nucleoside transport in acute promyelocytic leukemia NB4 cells.
    Roovers KI; Meckling-Gill KA
    J Cell Physiol; 1996 Mar; 166(3):593-600. PubMed ID: 8600163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-affinity, equilibrative nucleoside transporter of pig kidney cell line (PK-15).
    Aran JM; Plagemann PG
    Biochim Biophys Acta; 1992 Jul; 1108(1):67-74. PubMed ID: 1379470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides.
    Dagnino L; Paterson AR
    Cancer Res; 1990 Oct; 50(20):6549-53. PubMed ID: 1698538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L1210/B23.1 cells express equilibrative, inhibitor-sensitive nucleoside transport activity and lack two parental nucleoside transport activities.
    Vijayalakshmi D; Dagnino L; Belt JA; Gati WP; Cass CE; Paterson AR
    J Biol Chem; 1992 Aug; 267(24):16951-6. PubMed ID: 1512237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and release of [3H]formycin B via sodium-dependent nucleoside transporters in mouse leukemic L1210/MA27.1 cells.
    Borgland SL; Parkinson FE
    J Pharmacol Exp Ther; 1997 Apr; 281(1):347-53. PubMed ID: 9103516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent nucleoside transport in rabbit intestinal epithelium.
    Roden M; Paterson AR; Turnheim K
    Gastroenterology; 1991 Jun; 100(6):1553-62. PubMed ID: 2019361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleoside transport in brush border membrane vesicles from human kidney.
    Gutierrez MM; Brett CM; Ott RJ; Hui AC; Giacomini KM
    Biochim Biophys Acta; 1992 Mar; 1105(1):1-9. PubMed ID: 1567888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-dependent nucleoside transport in mouse leukemia L1210 cells.
    Dagnino L; Bennett LL; Paterson AR
    J Biol Chem; 1991 Apr; 266(10):6308-11. PubMed ID: 2007583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoside transporter subtype expression and function in rat skeletal muscle microvascular endothelial cells.
    Archer RG; Pitelka V; Hammond JR
    Br J Pharmacol; 2004 Sep; 143(1):202-14. PubMed ID: 15289294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters.
    Crawford CR; Ng CY; Noel LD; Belt JA
    J Biol Chem; 1990 Jun; 265(17):9732-6. PubMed ID: 2351668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium-dependent, concentrative nucleoside transport in cultured intestinal epithelial cells.
    Jakobs ES; Paterson AR
    Biochem Biophys Res Commun; 1986 Nov; 140(3):1028-35. PubMed ID: 3778480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.