These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19027839)

  • 1. Monte Carlo simulations for the study of drug release from cylindrical matrix systems with an inert nucleus.
    Martínez L; Villalobos R; Sánchez M; Cruz J; Ganem A; Melgoza LM
    Int J Pharm; 2009 Mar; 369(1-2):38-46. PubMed ID: 19027839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameters affecting drug release from inert matrices. 1: Monte Carlo simulation.
    Villalobos R; Viquez H; Hernández B; Ganem A; Melgoza LM; Young PM
    Pharm Dev Technol; 2012; 17(3):344-52. PubMed ID: 21214424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the drug-excipient ratio in matrix-type-controlled release systems: computer simulation study.
    Villalobos R; Ganem A; Cordero S; Vidales AM; Domínguez A
    Drug Dev Ind Pharm; 2005 Jul; 31(6):535-43. PubMed ID: 16109626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from a multiparticulate pellet system.
    Zimm KR; Schwartz JB; O'Connor RE
    Pharm Dev Technol; 1996 Apr; 1(1):37-42. PubMed ID: 9552329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations of drug release from matrices with periodic layers of high and low diffusivity.
    Kosmidis K; Macheras P
    Int J Pharm; 2008 Apr; 354(1-2):111-6. PubMed ID: 18063328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery.
    Miranda A; Millán M; Caraballo I
    Int J Pharm; 2006 Mar; 311(1-2):75-81. PubMed ID: 16446063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Release from Inert Spherical Matrix Systems Using Monte Carlo Simulations.
    Villalobos R; Garcia EV; Quintanar D; Young PM
    Curr Drug Deliv; 2017; 14(1):65-72. PubMed ID: 27174175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets.
    Fuertes I; Miranda A; Millán M; Caraballo I
    Eur J Pharm Biopharm; 2006 Nov; 64(3):336-42. PubMed ID: 16876392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas.
    Kosmidis K; Macheras P
    Int J Pharm; 2007 Oct; 343(1-2):166-72. PubMed ID: 17590294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of percolation theory in the study of an extended release Verapamil hydrochloride formulation.
    Gonçalves-Araújo T; Rajabi-Siahboomi AR; Caraballo I
    Int J Pharm; 2008 Sep; 361(1-2):112-7. PubMed ID: 18621491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: theory and Monte Carlo simulations.
    Pasinetti PM; Romá F; Riccardo JL; Ramirez-Pastor AJ
    J Chem Phys; 2006 Dec; 125(21):214705. PubMed ID: 17166038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of release kinetics of coated tablets containing constant and non-constant drug reservoirs.
    Zhou Y; Chu JS; Li JX; Wu XY
    Int J Pharm; 2010 Jan; 385(1-2):98-103. PubMed ID: 19879936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function.
    Kosmidis K; Argyrakis P; Macheras P
    Pharm Res; 2003 Jul; 20(7):988-95. PubMed ID: 12880283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of drug particle size in ultrasound compacted tablets. Continuum percolation model approach.
    Millán M; Caraballo I
    Int J Pharm; 2006 Mar; 310(1-2):168-74. PubMed ID: 16431046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comments concerning: Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas.
    Casault S; Slater GW
    Int J Pharm; 2009 Jan; 365(1-2):214-5. PubMed ID: 18977422
    [No Abstract]   [Full Text] [Related]  

  • 16. Study of critical points of drugs with different solubilities in hydrophilic matrices.
    Fuertes I; Caraballo I; Miranda A; Millán M
    Int J Pharm; 2010 Jan; 383(1-2):138-46. PubMed ID: 19766706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of shape factor on the release rate of drugs from lipid matrices.
    Ozdemir N; Karataş A
    Acta Pol Pharm; 1997; 54(5):353-6. PubMed ID: 9584692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the use of the Weibull function for the discernment of drug release mechanisms.
    Papadopoulou V; Kosmidis K; Vlachou M; Macheras P
    Int J Pharm; 2006 Feb; 309(1-2):44-50. PubMed ID: 16376033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling drug dissolution from controlled release products using genetic programming.
    Do DQ; Rowe RC; York P
    Int J Pharm; 2008 Mar; 351(1-2):194-200. PubMed ID: 18053658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling weight variability in a pan coating process using Monte Carlo simulations.
    Pandey P; Katakdaunde M; Turton R
    AAPS PharmSciTech; 2006 Oct; 7(4):83. PubMed ID: 17233536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.