BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19028138)

  • 1. Could the beta rebound in the EEG be suitable to realize a "brain switch"?
    Pfurtscheller G; Solis-Escalante T
    Clin Neurophysiol; 2009 Jan; 120(1):24-9. PubMed ID: 19028138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overt foot movement detection in one single Laplacian EEG derivation.
    Solis-Escalante T; Müller-Putz G; Pfurtscheller G
    J Neurosci Methods; 2008 Oct; 175(1):148-53. PubMed ID: 18761037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test.
    Qian K; Nikolov P; Huang D; Fei DY; Chen X; Bai O
    Clin Neurophysiol; 2010 Aug; 121(8):1304-13. PubMed ID: 20347386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta rebound after different types of motor imagery in man.
    Pfurtscheller G; Neuper C; Brunner C; da Silva FL
    Neurosci Lett; 2005 Apr; 378(3):156-9. PubMed ID: 15781150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor imagery and EEG-based control of spelling devices and neuroprostheses.
    Neuper C; Müller-Putz GR; Scherer R; Pfurtscheller G
    Prog Brain Res; 2006; 159():393-409. PubMed ID: 17071244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients.
    Müller-Putz GR; Zimmermann D; Graimann B; Nestinger K; Korisek G; Pfurtscheller G
    Brain Res; 2007 Mar; 1137(1):84-91. PubMed ID: 17229403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications.
    Vuckovic A; Sepulveda F
    Clin Neurophysiol; 2008 Feb; 119(2):446-58. PubMed ID: 18065266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cue-induced beta rebound during withholding of overt and covert foot movement.
    Solis-Escalante T; Müller-Putz GR; Pfurtscheller G; Neuper C
    Clin Neurophysiol; 2012 Jun; 123(6):1182-90. PubMed ID: 22349305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks.
    Pfurtscheller G; Brunner C; Schlögl A; Lopes da Silva FH
    Neuroimage; 2006 May; 31(1):153-9. PubMed ID: 16443377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining spatial filters for the classification of single-trial EEG in a finger movement task.
    Liao X; Yao D; Wu D; Li C
    IEEE Trans Biomed Eng; 2007 May; 54(5):821-31. PubMed ID: 17518278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelet packet-based independent component analysis for feature extraction from motor imagery EEG of complex movements.
    Zhou Z; Wan B
    Clin Neurophysiol; 2012 Sep; 123(9):1779-88. PubMed ID: 22464489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.