BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19028394)

  • 1. Extracellular enzyme activities and nutrient availability during artificial groundwater recharge.
    Kolehmainen RE; Korpela JP; Münster U; Puhakka JA; Tuovinen OH
    Water Res; 2009 Feb; 43(2):405-16. PubMed ID: 19028394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural organic matter (NOM) removal and structural changes in the bacterial community during artificial groundwater recharge with humic lake water.
    Kolehmainen RE; Langwaldt JH; Puhakka JA
    Water Res; 2007 Jun; 41(12):2715-25. PubMed ID: 17434565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils.
    Schütz K; Kandeler E; Nagel P; Scheu S; Ruess L
    FEMS Microbiol Ecol; 2010 Jun; 72(3):445-55. PubMed ID: 20557572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of natural organic matter in long-term, continuous-flow experiments simulating artificial ground water recharge for drinking water production.
    Kolehmainen RE; Kortelainen NM; Langwaldt JH; Puhakka JA
    J Environ Qual; 2009; 38(1):44-52. PubMed ID: 19141794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge.
    Kolehmainen RE; Tiirola M; Puhakka JA
    Water Res; 2008 Nov; 42(17):4525-37. PubMed ID: 18757075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge.
    Zhou Q; McCraven S; Garcia J; Gasca M; Johnson TA; Motzer WE
    Water Res; 2009 Feb; 43(3):793-805. PubMed ID: 19046595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.
    Monirul Islam M; Kanungoe P
    Water Sci Technol; 2005; 52(12):251-8. PubMed ID: 16477993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table.
    Schütz K; Nagel P; Vetter W; Kandeler E; Ruess L
    FEMS Microbiol Ecol; 2009 Jan; 67(1):171-82. PubMed ID: 19016869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical distribution of sediment enzyme activities involved in the cycling of carbon, nitrogen, phosphorus and sulphur in three boreal rural lakes.
    Hakulinen R; Kähkönen MA; Salkinoja-Salonen M
    Water Res; 2005 Jun; 39(11):2319-26. PubMed ID: 15955545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of the fluorogenic enzyme substrates and pH optima of enzyme activities in different Finnish soils.
    Niemi RM; Vepsäläinen M
    J Microbiol Methods; 2005 Feb; 60(2):195-205. PubMed ID: 15590094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace organic chemicals contamination in ground water recharge.
    Díaz-Cruz MS; Barceló D
    Chemosphere; 2008 Jun; 72(3):333-42. PubMed ID: 18378277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic matter characterisation and turnover in the sediment and seawater of a tourist harbour.
    Misic C; Covazzi Harriague A
    Mar Environ Res; 2009 Dec; 68(5):227-35. PubMed ID: 19596149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benthic bacterial response to variable estuarine water inputs.
    Manini E; Luna GM; Danovaro R
    FEMS Microbiol Ecol; 2004 Nov; 50(3):185-94. PubMed ID: 19712359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of a spatially-explicit index of Chesapeake Bay health.
    Williams M; Longstaff B; Buchanan C; Llansó R; Dennison W
    Mar Pollut Bull; 2009; 59(1-3):14-25. PubMed ID: 19117579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic.
    Baltar F; Arístegui J; Sintes E; van Aken HM; Gasol JM; Herndl GJ
    Environ Microbiol; 2009 Aug; 11(8):1998-2014. PubMed ID: 19508555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground water recharge and flow characterization using multiple isotopes.
    Chowdhury AH; Uliana M; Wade S
    Ground Water; 2008; 46(3):426-36. PubMed ID: 18384592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient variation in an urban lake chain and its consequences for phytoplankton production.
    Roach WJ; Grimm NB
    J Environ Qual; 2009; 38(4):1429-40. PubMed ID: 19465718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.
    Nöjd P; Lindroos AJ; Smolander A; Derome J; Lumme I; Helmisaari HS
    Sci Total Environ; 2009 May; 407(10):3365-71. PubMed ID: 19269680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.