These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19028467)

  • 1. Manual interception of moving targets in two dimensions: performance and space-time accuracy.
    Tresilian JR; Plooy AM; Marinovic W
    Brain Res; 2009 Jan; 1250():202-17. PubMed ID: 19028467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task.
    Iversen IH; Matsuzawa T
    Anim Cogn; 2003 Sep; 6(3):169-83. PubMed ID: 12761656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal precision of interceptive action: differential effects of target size and speed.
    Tresilian R; Oliver J; Carroll J
    Exp Brain Res; 2003 Feb; 148(4):425-38. PubMed ID: 12582826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic variation in performance of an interceptive action with changes in the temporal constraints.
    Tresilian JR; Houseman JH
    Q J Exp Psychol A; 2005 Apr; 58(3):447-66. PubMed ID: 16025757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size.
    Tresilian JR; Plooy A
    Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control strategies when intercepting slowly moving targets.
    Dubrowski A; Carnahan H
    J Mot Behav; 2001 Mar; 33(1):37-48. PubMed ID: 11265056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of task constraints on the organization of interception movements.
    Fayt V; Bootsma RJ; Marteniuk RG; Mackenzie CL; Laurent M
    J Sports Sci; 1997 Dec; 15(6):581-6. PubMed ID: 9486435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EFFECTS OF SPATIAL AND TEMPORAL CONSTRAINTS ON INTERCEPTIVE AIMING TASK PERFORMANCE AND GAZE CONTROL.
    Lim J
    Percept Mot Skills; 2015 Oct; 121(2):509-27. PubMed ID: 26445153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using spatial occlusion to explore the control strategies used in rapid interceptive actions: Predictive or prospective control?
    Panchuk D; Vickers JN
    J Sports Sci; 2009 Oct; 27(12):1249-60. PubMed ID: 20213920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Children's age-related speed-accuracy strategies in intercepting moving targets in two dimensions.
    Rothenberg-Cunningham A; Newell KM
    Res Q Exerc Sport; 2013 Mar; 84(1):79-87. PubMed ID: 23611011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility in intercepting moving objects.
    Brenner E; Smeets JB
    J Vis; 2007 Nov; 7(5):14.1-17. PubMed ID: 18217854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.
    Selen LP; van Dieën JH; Beek PJ
    J Neurophysiol; 2006 Nov; 96(5):2750-9. PubMed ID: 16899639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between space and number representations during motor preparation in manual aiming.
    Ishihara M; Jacquin-Courtois S; Flory V; Salemme R; Imanaka K; Rossetti Y
    Neuropsychologia; 2006; 44(7):1009-16. PubMed ID: 16406028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a moving target versus a temporal constraint on reach and grasp in patients with Parkinson's disease.
    Majsak MJ; Kaminski T; Gentile AM; Gordon AM
    Exp Neurol; 2008 Apr; 210(2):479-88. PubMed ID: 18237731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of temporal-precision and time-minimization constraints on the spatial and temporal accuracy of aimed hand movements.
    Carlton LG
    J Mot Behav; 1994 Mar; 26(1):43-50. PubMed ID: 15757833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hitting moving targets: effects of target speed and dimensions on movement time.
    Brouwer AM; Smeets JB; Brenner E
    Exp Brain Res; 2005 Aug; 165(1):28-36. PubMed ID: 15868174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal constraints on upright children's coordination when hitting a moving target.
    Rosey F; Keller J; Golomer E
    Infant Behav Dev; 2007 Dec; 30(4):666-78. PubMed ID: 17420054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.