BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19028857)

  • 1. Physiological basis for residual feed intake.
    Herd RM; Arthur PF
    J Anim Sci; 2009 Apr; 87(14 Suppl):E64-71. PubMed ID: 19028857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of polymorphisms influencing feed intake and efficiency in beef cattle.
    Sherman EL; Nkrumah JD; Murdoch BM; Moore SS
    Anim Genet; 2008 Jun; 39(3):225-31. PubMed ID: 18318789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for residual feed intake in beef cattle.
    Moore SS; Mujibi FD; Sherman EL
    J Anim Sci; 2009 Apr; 87(14 Suppl):E41-7. PubMed ID: 18952728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship of feeding behavior to residual feed intake in crossbred Angus steers fed traditional and no-roughage diets.
    Golden JW; Kerley MS; Kolath WH
    J Anim Sci; 2008 Jan; 86(1):180-6. PubMed ID: 17785590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine mapping quantitative trait loci for feed intake and feed efficiency in beef cattle.
    Sherman EL; Nkrumah JD; Li C; Bartusiak R; Murdoch B; Moore SS
    J Anim Sci; 2009 Jan; 87(1):37-45. PubMed ID: 18791150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole genome single nucleotide polymorphism associations with feed intake and feed efficiency in beef cattle.
    Sherman EL; Nkrumah JD; Moore SS
    J Anim Sci; 2010 Jan; 88(1):16-22. PubMed ID: 19749024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual feed intake studies in Angus-sired cattle reveal a potential role for hypothalamic gene expression in regulating feed efficiency.
    Perkins SD; Key CN; Garrett CF; Foradori CD; Bratcher CL; Kriese-Anderson LA; Brandebourg TD
    J Anim Sci; 2014 Feb; 92(2):549-60. PubMed ID: 24398827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of mitochondrial function and feed efficiency in poultry and livestock species.
    Bottje WG; Carstens GE
    J Anim Sci; 2009 Apr; 87(14 Suppl):E48-63. PubMed ID: 19028862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle.
    Cantalapiedra-Hijar G; Abo-Ismail M; Carstens GE; Guan LL; Hegarty R; Kenny DA; McGee M; Plastow G; Relling A; Ortigues-Marty I
    Animal; 2018 Dec; 12(s2):s321-s335. PubMed ID: 30139392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in mitochondrial efficiency between lines of mice divergently selected for heat loss.
    McDonald JM; Ramsey JJ; Miner JL; Nielsen MK
    J Anim Sci; 2009 Oct; 87(10):3105-13. PubMed ID: 19542504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting beef cattle producer perspectives on feed efficiency.
    Wulfhorst JD; Ahola JK; Kane SL; Keenan LD; Hill RA
    J Anim Sci; 2010 Nov; 88(11):3749-58. PubMed ID: 20622178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cattle selected for lower residual feed intake have reduced daily methane production.
    Hegarty RS; Goopy JP; Herd RM; McCorkell B
    J Anim Sci; 2007 Jun; 85(6):1479-86. PubMed ID: 17296777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of biological networks and biological pathways associated with residual feed intake in beef cattle.
    Karisa B; Moore S; Plastow G
    Anim Sci J; 2014 Apr; 85(4):374-87. PubMed ID: 24373146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic parameters for measures of energetic efficiency of bulls and their relationships with carcass traits of field progeny in Japanese Black cattle.
    Hoque MA; Hosono M; Oikawa T; Suzuki K
    J Anim Sci; 2009 Jan; 87(1):99-106. PubMed ID: 18765855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic changes and tissue responses to selection on residual feed intake in growing pigs.
    Le Naou T; Le Floc'h N; Louveau I; Gilbert H; Gondret F
    J Anim Sci; 2012 Dec; 90(13):4771-80. PubMed ID: 22871936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review: Improving feed efficiency of beef cattle - the current state of the art and future challenges.
    Kenny DA; Fitzsimons C; Waters SM; McGee M
    Animal; 2018 Sep; 12(9):1815-1826. PubMed ID: 29779496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle.
    Karisa BK; Thomson J; Wang Z; Stothard P; Moore SS; Plastow GS
    J Anim Sci; 2013 Aug; 91(8):3502-13. PubMed ID: 23736061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between feeding behavior and residual feed intake in growing Brangus heifers.
    Bingham GM; Friend TH; Lancaster PA; Carstens GE
    J Anim Sci; 2009 Aug; 87(8):2685-9. PubMed ID: 19395511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake.
    Chen Y; Gondro C; Quinn K; Herd RM; Parnell PF; Vanselow B
    Anim Genet; 2011 Oct; 42(5):475-90. PubMed ID: 21906099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.
    Kong RS; Liang G; Chen Y; Stothard P; Guan le L
    BMC Genomics; 2016 Aug; 17():592. PubMed ID: 27506548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.