These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19028857)

  • 21. Towards an improved estimation of the biological components of residual feed intake in growing cattle.
    Savietto D; Berry DP; Friggens NC
    J Anim Sci; 2014 Feb; 92(2):467-76. PubMed ID: 24664556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An examination of the association of serum IGF-I concentration, potential candidate genes, and fiber type composition with variation in residual feed intake in progeny of Red Angus sires divergent for maintenance energy EPD.
    Welch CM; Thornton KJ; Murdoch GK; Chapalamadugu KC; Schneider CS; Ahola JK; Hall JB; Price WJ; Hill RA
    J Anim Sci; 2013 Dec; 91(12):5626-36. PubMed ID: 24085409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic associations of residual feed intake with serum insulin-like growth factor-I and leptin concentrations, meat quality, and carcass cross sectional fat area ratios in Duroc pigs.
    Hoque MA; Katoh K; Suzuki K
    J Anim Sci; 2009 Oct; 87(10):3069-75. PubMed ID: 19465494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection to reduce residual feed intake in pigs produces a correlated response in juvenile insulin-like growth factor-I concentration.
    Bunter KL; Cai W; Johnston DJ; Dekkers JC
    J Anim Sci; 2010 Jun; 88(6):1973-81. PubMed ID: 20154174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic parameters for feed efficiency traits and their relationships with growth and carcass traits in Duroc pigs.
    Hoque MA; Suzuki K; Kadowaki H; Shibata T; Oikawa T
    J Anim Breed Genet; 2007 Jun; 124(3):108-16. PubMed ID: 17550351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between residual feed intake and radiated heat loss using infrared thermography in young beef bulls.
    Thompson S; Schaefer AL; Crow GH; Basarab J; Colyn J; Ominski K
    J Therm Biol; 2018 Dec; 78():304-311. PubMed ID: 30509652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs.
    Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Causeur D; Gilbert H; Louveau I
    BMC Genomics; 2017 Mar; 18(1):244. PubMed ID: 28327084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variance components due to direct genetic, maternal genetic and permanent environmental effect for growth and feed-efficiency traits in young male Japanese Black cattle.
    Hoque MA; Arthur PF; Hiramoto K; Gilmour AR; Oikawa T
    J Anim Breed Genet; 2007 Jun; 124(3):102-7. PubMed ID: 17550350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of feed restriction on physical activity, body weight, physiology, haematology and immunology in female mink.
    Damgaard BM; Dalgaard TS; Larsen T; Hedemann MS; Hansen SW
    Res Vet Sci; 2012 Oct; 93(2):936-42. PubMed ID: 22100248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ruminal expression of the NQO1, RGS5, and ACAT1 genes may be indicators of feed efficiency in beef steers.
    Kern RJ; Zarek CM; Lindholm-Perry AK; Kuehn LA; Snelling WM; Freetly HC; Cunningham HC; Meyer AM
    Anim Genet; 2017 Feb; 48(1):90-92. PubMed ID: 27611366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes.
    Tizioto PC; Coutinho LL; Decker JE; Schnabel RD; Rosa KO; Oliveira PS; Souza MM; Mourão GB; Tullio RR; Chaves AS; Lanna DP; Zerlotini-Neto A; Mudadu MA; Taylor JF; Regitano LC
    BMC Genomics; 2015 Mar; 16(1):242. PubMed ID: 25887532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic parameters for measures of the efficiency of gain of boars and the genetic relationships with its component traits in Duroc pigs.
    Hoque MA; Kadowaki H; Shibata T; Oikawa T; Suzuki K
    J Anim Sci; 2007 Aug; 85(8):1873-9. PubMed ID: 17431052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Board Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants.
    Allen MS; Bradford BJ; Oba M
    J Anim Sci; 2009 Oct; 87(10):3317-34. PubMed ID: 19648500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene expression profiling reveals candidate genes related to residual feed intake in duodenum of laying ducks.
    Zeng T; Huang L; Ren J; Chen L; Tian Y; Huang Y; Zhang H; Du J; Lu L
    J Anim Sci; 2017 Dec; 95(12):5270-5277. PubMed ID: 29293758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic potential for the regulation of variability in body lipid and protein content of European whitefish (Coregonus lavaretus).
    Kause A; Quinton CD; Ruohonen K; Koskela J
    Br J Nutr; 2009 May; 101(10):1444-51. PubMed ID: 18826727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Genomic Variants Related to Residual Feed Intake in Local and Commercial Chickens by Whole Genomic Resequencing.
    Liu J; Liu R; Wang J; Zhang Y; Xing S; Zheng M; Cui H; Li Q; Li P; Cui X; Li W; Zhao G; Wen J
    Genes (Basel); 2018 Jan; 9(2):. PubMed ID: 29364149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility.
    Meyer NF; Erickson GE; Klopfenstein TJ; Greenquist MA; Luebbe MK; Williams P; Engstrom MA
    J Anim Sci; 2009 Jul; 87(7):2346-54. PubMed ID: 19359504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene expression differences in Longissimus muscle of Nelore steers genetically divergent for residual feed intake.
    Tizioto PC; Coutinho LL; Oliveira PS; Cesar AS; Diniz WJ; Lima AO; Rocha MI; Decker JE; Schnabel RD; Mourão GB; Tullio RR; Zerlotini A; Taylor JF; Regitano LC
    Sci Rep; 2016 Dec; 6():39493. PubMed ID: 28004777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy balance, physical activity, and cancer risk.
    Fair AM; Montgomery K
    Methods Mol Biol; 2009; 472():57-88. PubMed ID: 19107429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rams with poor feed efficiency are highly responsive to an exogenous adrenocorticotropin hormone (ACTH) challenge.
    Knott SA; Cummins LJ; Dunshea FR; Leury BJ
    Domest Anim Endocrinol; 2008 Apr; 34(3):261-8. PubMed ID: 17826024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.