BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 19028983)

  • 1. In vivo mutagenicity of conazole fungicides correlates with tumorigenicity.
    Ross JA; Moore T; Leavitt SA
    Mutagenesis; 2009 Mar; 24(2):149-52. PubMed ID: 19028983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity profiles in mice treated with hepatotumorigenic and non-hepatotumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.
    Allen JW; Wolf DC; George MH; Hester SD; Sun G; Thai SF; Delker DA; Moore T; Jones C; Nelson G; Roop BC; Leavitt S; Winkfield E; Ward WO; Nesnow S
    Toxicol Pathol; 2006; 34(7):853-62. PubMed ID: 17178687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the mutations induced by conazole fungicides in vivo.
    Ross JA; Leavitt SA
    Mutagenesis; 2010 May; 25(3):231-4. PubMed ID: 20064898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profiles in liver from mice treated with hepatotumorigenic and nonhepatotumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.
    Ward WO; Delker DA; Hester SD; Thai SF; Wolf DC; Allen JW; Nesnow S
    Toxicol Pathol; 2006; 34(7):863-78. PubMed ID: 17178688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A potential microRNA signature for tumorigenic conazoles in mouse liver.
    Ross JA; Blackman CF; Thai SF; Li Z; Kohan M; Jones CP; Chen T
    Mol Carcinog; 2010 Apr; 49(4):320-3. PubMed ID: 20175128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiles in liver from rats treated with tumorigenic and non-tumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.
    Hester SD; Wolf DC; Nesnow S; Thai SF
    Toxicol Pathol; 2006; 34(7):879-94. PubMed ID: 17178689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo.
    Chen PJ; Padgett WT; Moore T; Winnik W; Lambert GR; Thai SF; Hester SD; Nesnow S
    Toxicol Appl Pharmacol; 2009 Jan; 234(2):143-55. PubMed ID: 19010342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity profiles in rats treated with tumorigenic and nontumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.
    Wolf DC; Allen JW; George MH; Hester SD; Sun G; Moore T; Thai SF; Delker D; Winkfield E; Leavitt S; Nelson G; Roop BC; Jones C; Thibodeaux J; Nesnow S
    Toxicol Pathol; 2006; 34(7):895-902. PubMed ID: 17178690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative changes in endogenous DNA adducts correlate with conazole in vivo mutagenicity and tumorigenicity.
    Ross JA; Leavitt SA; Schmid JE; Nelson GB
    Mutagenesis; 2012 Sep; 27(5):541-9. PubMed ID: 22492202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression profiling in the liver of CD-1 mice to characterize the hepatotoxicity of triazole fungicides.
    Goetz AK; Bao W; Ren H; Schmid JE; Tully DB; Wood C; Rockett JC; Narotsky MG; Sun G; Lambert GR; Thai SF; Wolf DC; Nesnow S; Dix DJ
    Toxicol Appl Pharmacol; 2006 Sep; 215(3):274-84. PubMed ID: 16730040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.
    Lin CH; Chou PH; Chen PJ
    J Hazard Mater; 2014 Jul; 277():150-8. PubMed ID: 24962053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of testosterone homeostasis as a mode of action for the reproductive toxicity of triazole fungicides in the male rat.
    Goetz AK; Ren H; Schmid JE; Blystone CR; Thillainadarajah I; Best DS; Nichols HP; Strader LF; Wolf DC; Narotsky MG; Rockett JC; Dix DJ
    Toxicol Sci; 2007 Jan; 95(1):227-39. PubMed ID: 17018648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression profiling in liver and testis of rats to characterize the toxicity of triazole fungicides.
    Tully DB; Bao W; Goetz AK; Blystone CR; Ren H; Schmid JE; Strader LF; Wood CR; Best DS; Narotsky MG; Wolf DC; Rockett JC; Dix DJ
    Toxicol Appl Pharmacol; 2006 Sep; 215(3):260-73. PubMed ID: 16643972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression.
    Nesnow S; Ward W; Moore T; Ren H; Hester SD
    Toxicol Sci; 2009 Jul; 110(1):68-83. PubMed ID: 19363144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concordance of transcriptional and apical benchmark dose levels for conazole-induced liver effects in mice.
    Bhat VS; Hester SD; Nesnow S; Eastmond DA
    Toxicol Sci; 2013 Nov; 136(1):205-15. PubMed ID: 23970803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of oxidative DNA damage, cell proliferation and in vivo mutagenicity induced by dicyclanil, a non-genotoxic carcinogen, using gpt delta mice.
    Umemura T; Kuroiwa Y; Tasaki M; Okamura T; Ishii Y; Kodama Y; Nohmi T; Mitsumori K; Nishikawa A; Hirose M
    Mutat Res; 2007 Sep; 633(1):46-54. PubMed ID: 17581771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide.
    Hester SD; Nesnow S
    Toxicol Appl Pharmacol; 2008 Mar; 227(3):357-69. PubMed ID: 18164361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descriptive and mechanistic toxicity of conazole fungicides using the model test alga Dunaliella tertiolecta (Chlorophyceae).
    Baird TD; DeLorenzo ME
    Environ Toxicol; 2010 Jun; 25(3):213-20. PubMed ID: 19382186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel germline mutation in Big Blue mice.
    Crabbe RA; Prtenjaca A; Tarnowski HE; Hill KA
    Environ Mol Mutagen; 2009 Mar; 50(2):114-20. PubMed ID: 19107908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency and spectrum of ENU-induced mutation in the Phi X174 transgene in mouse splenic lymphocytes and their significance to spontaneous transgenic rodent mutation frequencies.
    Valentine CR; Rainey HF; Farrell JM; Shaddock JG; Dobrovolsky VN; Delongchamp RR
    Mutagenesis; 2008 Sep; 23(5):383-97. PubMed ID: 18504270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.