These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19029024)

  • 1. Applicability of infrared photorefraction for measurement of accommodation in awake-behaving normal and strabismic monkeys.
    Bossong H; Swann M; Glasser A; Das VE
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):966-73. PubMed ID: 19029024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-field accommodation in rhesus monkeys measured using infrared photorefraction.
    He L; Wendt M; Glasser A
    Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):215-23. PubMed ID: 22125278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional simulation of eccentric photorefraction images for ametropes: factors influencing the measurement.
    Wu Y; Thibos LN; Candy TR
    Ophthalmic Physiol Opt; 2018 Jul; 38(4):432-446. PubMed ID: 29736941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural strabismus in monkeys: accommodative errors assessed by photorefraction and their relationship to convergence errors.
    Quick MW; Newbern JD; Boothe RG
    Invest Ophthalmol Vis Sci; 1994 Nov; 35(12):4069-79. PubMed ID: 7960589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic photorefraction system: an offline application for the dynamic analysis of ocular focus and pupil size from photorefraction images.
    Suryakumar R; Kwok D; Fernandez S; Bobier WR
    Comput Biol Med; 2009 Mar; 39(3):195-205. PubMed ID: 19217087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Target Parameters on Fixation Stability in Normal and Strabismic Monkeys.
    Pirdankar OH; Das VE
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1087-95. PubMed ID: 26968739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of the lag of accommodation using photorefraction.
    Seidemann A; Schaeffel F
    Vision Res; 2003 Feb; 43(4):419-30. PubMed ID: 12535999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor).
    Choi M; Weiss S; Schaeffel F; Seidemann A; Howland HC; Wilhelm B; Wilhelm H
    Optom Vis Sci; 2000 Oct; 77(10):537-48. PubMed ID: 11100892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of refractive error and accommodation with the photorefractor PowerRef II.
    Jainta S; Jaschinski W; Hoormann J
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):520-7. PubMed ID: 15491480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal Development of Ocular Misalignment in Nonhuman Primate Models for Strabismus.
    Karsolia A; Burns E; Pullela M; Das VE
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):8. PubMed ID: 32282917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
    Altoaimi BH; Kollbaum P; Meyer D; Bradley A
    Ophthalmic Physiol Opt; 2018 Mar; 38(2):152-163. PubMed ID: 29315718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical variability in the calibration of slope-based eccentric photorefraction.
    Bharadwaj SR; Sravani NG; Little JA; Narasaiah A; Wong V; Woodburn R; Candy TR
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):923-31. PubMed ID: 23695324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fixational Saccades and Their Relation to Fixation Instability in Strabismic Monkeys.
    Upadhyaya S; Pullela M; Ramachandran S; Adade S; Joshi AC; Das VE
    Invest Ophthalmol Vis Sci; 2017 Nov; 58(13):5743-5753. PubMed ID: 29114840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of cells in the midbrain near-response area in monkeys with strabismus.
    Das VE
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3858-64. PubMed ID: 22562519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial patterns of fixation-switch behavior in strabismic monkeys.
    Agaoglu MN; LeSage SK; Joshi AC; Das VE
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1259-68. PubMed ID: 24508786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodative changes in lens diameter in rhesus monkeys.
    Glasser A; Wendt M; Ostrin L
    Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):278-86. PubMed ID: 16384974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lens magnification affects the estimates of refractive error obtained using eccentric infrared photorefraction.
    Bharadwaj SR; Bandela PK; Nilagiri VK
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):908-915. PubMed ID: 29877334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys.
    Ostrin LA; Glasser A
    Exp Eye Res; 2007 Feb; 84(2):302-13. PubMed ID: 17137577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic measurement of accommodation and pupil size using the portable Grand Seiko FR-5000 autorefractor.
    Wolffsohn JS; Ukai K; Gilmartin B
    Optom Vis Sci; 2006 May; 83(5):306-10. PubMed ID: 16699443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maldevelopment of convergence eye movements in macaque monkeys with small- and large-angle infantile esotropia.
    Tychsen L; Scott C
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3358-68. PubMed ID: 12882782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.