BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19029065)

  • 1. Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease.
    Merrill AH; Stokes TH; Momin A; Park H; Portz BJ; Kelly S; Wang E; Sullards MC; Wang MD
    J Lipid Res; 2009 Apr; 50 Suppl(Suppl):S97-102. PubMed ID: 19029065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics.
    Sullards MC; Allegood JC; Kelly S; Wang E; Haynes CA; Park H; Chen Y; Merrill AH
    Methods Enzymol; 2007; 432():83-115. PubMed ID: 17954214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (Glyco)sphingolipidology: an amazing challenge and opportunity for systems biology.
    Merrill AH; Wang MD; Park M; Sullards MC
    Trends Biochem Sci; 2007 Oct; 32(10):457-68. PubMed ID: 17928229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy.
    Zheng W; Kollmeyer J; Symolon H; Momin A; Munter E; Wang E; Kelly S; Allegood JC; Liu Y; Peng Q; Ramaraju H; Sullards MC; Cabot M; Merrill AH
    Biochim Biophys Acta; 2006 Dec; 1758(12):1864-84. PubMed ID: 17052686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of 1-Deoxysphingoid Bases and Their
    Wan J; Li J; Bandyopadhyay S; Kelly SL; Xiang Y; Zhang J; Merrill AH; Duan J
    J Agric Food Chem; 2019 Nov; 67(46):12953-12961. PubMed ID: 31638789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids.
    Haynes CA; Allegood JC; Park H; Sullards MC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Sep; 877(26):2696-708. PubMed ID: 19147416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipidomics analysis of large clinical cohorts. Part 2: Potential impact and applications.
    Chong JR; Xiang P; Wang W; Hind T; Chew WS; Ong WY; Lai MKP; Herr DR
    Biochem Biophys Res Commun; 2018 Oct; 504(3):602-607. PubMed ID: 29654757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.
    Canela N; Herrero P; Mariné S; Nadal P; Ras MR; Rodríguez MÁ; Arola L
    J Chromatogr A; 2016 Jan; 1428():16-38. PubMed ID: 26275862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS).
    Sullards MC; Liu Y; Chen Y; Merrill AH
    Biochim Biophys Acta; 2011 Nov; 1811(11):838-53. PubMed ID: 21749933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids.
    Jiang X; Cheng H; Yang K; Gross RW; Han X
    Anal Biochem; 2007 Dec; 371(2):135-45. PubMed ID: 17920553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry.
    Sullards MC; Merrill AH
    Sci STKE; 2001 Jan; 2001(67):pl1. PubMed ID: 11752637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penta-deuterium-labeled 4E, 8Z-sphingadienine for rapid analysis in sphingolipidomics study.
    Murai Y; Yuyama K; Mikami D; Igarashi Y; Monde K
    Chem Phys Lipids; 2022 Jul; 245():105202. PubMed ID: 35337796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action.
    Menaldino DS; Bushnev A; Sun A; Liotta DC; Symolon H; Desai K; Dillehay DL; Peng Q; Wang E; Allegood J; Trotman-Pruett S; Sullards MC; Merrill AH
    Pharmacol Res; 2003 May; 47(5):373-81. PubMed ID: 12676511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingoid bases of dietary ceramide 2-aminoethylphosphonate, a marine sphingolipid, absorb into lymph in rats.
    Tomonaga N; Tsuduki T; Manabe Y; Sugawara T
    J Lipid Res; 2019 Feb; 60(2):333-340. PubMed ID: 30552287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipidomics analysis of large clinical cohorts. Part 1: Technical notes and practical considerations.
    Chew WS; Seow WL; Chong JR; Lai MKP; Torta F; Wenk MR; Herr DR
    Biochem Biophys Res Commun; 2018 Oct; 504(3):596-601. PubMed ID: 29654754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Sphingolipidome in NAFLD.
    Montefusco D; Lambert J; Anderson A; Allegood J; Cowart LA
    Methods Mol Biol; 2022; 2455():279-303. PubMed ID: 35213002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tackling the biophysical properties of sphingolipids to decipher their biological roles.
    Carreira AC; Ventura AE; Varela AR; Silva LC
    Biol Chem; 2015 Jun; 396(6-7):597-609. PubMed ID: 25581755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant sphingolipids: decoding the enigma of the Sphinx.
    Pata MO; Hannun YA; Ng CK
    New Phytol; 2010 Feb; 185(3):611-30. PubMed ID: 20028469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols.
    Pruett ST; Bushnev A; Hagedorn K; Adiga M; Haynes CA; Sullards MC; Liotta DC; Merrill AH
    J Lipid Res; 2008 Aug; 49(8):1621-39. PubMed ID: 18499644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster.
    Fyrst H; Herr DR; Harris GL; Saba JD
    J Lipid Res; 2004 Jan; 45(1):54-62. PubMed ID: 13130120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.