These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19029291)

  • 1. Direct Mg(2+) binding activates adenylate kinase from Escherichia coli.
    Tan YW; Hanson JA; Yang H
    J Biol Chem; 2009 Jan; 284(5):3306-3313. PubMed ID: 19029291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of Mg²⁺ binding activity of adenylate kinase from Mycobacterium tuberculosis H₃₇Rv using fluorescence studies.
    Meena LS; Dhakate SR; Sahare PD
    Biotechnol Appl Biochem; 2012; 59(6):429-36. PubMed ID: 23586951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a mechanism of AMP-substrate inhibition in adenylate kinase from Escherichia coli.
    Sinev MA; Sineva EV; Ittah V; Haas E
    FEBS Lett; 1996 Nov; 397(2-3):273-6. PubMed ID: 8955362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates.
    Krishnamurthy H; Lou H; Kimple A; Vieille C; Cukier RI
    Proteins; 2005 Jan; 58(1):88-100. PubMed ID: 15521058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence and NMR investigations on the ligand binding properties of adenylate kinases.
    Reinstein J; Vetter IR; Schlichting I; Rösch P; Wittinghofer A; Goody RS
    Biochemistry; 1990 Aug; 29(32):7440-50. PubMed ID: 2223775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural topology and activation of an initial adenylate kinase-substrate complex.
    Ådén J; Weise CF; Brännström K; Olofsson A; Wolf-Watz M
    Biochemistry; 2013 Feb; 52(6):1055-61. PubMed ID: 23339454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP.
    Berry MB; Meador B; Bilderback T; Liang P; Glaser M; Phillips GN
    Proteins; 1994 Jul; 19(3):183-98. PubMed ID: 7937733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR.
    Yan HG; Tsai MD
    Biochemistry; 1991 Jun; 30(22):5539-46. PubMed ID: 2036423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assignment of the nucleotide binding sites and the mechanism of substrate inhibition of Escherichia coli adenylate kinase.
    Liang P; Phillips GN; Glaser M
    Proteins; 1991; 9(1):28-36. PubMed ID: 2017434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium Signaling in Plants.
    Kleczkowski LA; Igamberdiev AU
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33503839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General and kinetic properties of pig heart mitochondrial adenylate kinase.
    Font B; Gautheron DC
    Biochim Biophys Acta; 1980 Feb; 611(2):299-308. PubMed ID: 6243987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain closure in adenylate kinase.
    Sinev MA; Sineva EV; Ittah V; Haas E
    Biochemistry; 1996 May; 35(20):6425-37. PubMed ID: 8639589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of a pre-existing conformational equilibrium tunes adenylate kinase activity.
    Ådén J; Verma A; Schug A; Wolf-Watz M
    J Am Chem Soc; 2012 Oct; 134(40):16562-70. PubMed ID: 22963267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium and cell energetics: At the junction of metabolism of adenylate and non-adenylate nucleotides.
    Kleczkowski LA; Igamberdiev AU
    J Plant Physiol; 2023 Jan; 280():153901. PubMed ID: 36549033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli.
    Chen B; Sysoeva TA; Chowdhury S; Guo L; Nixon BT
    FEBS J; 2009 Feb; 276(3):807-15. PubMed ID: 19143839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of adenine nucleotides bound to Escherichia coli adenylate kinase. 1. Adenosine conformations by proton two-dimensional transferred nuclear Overhauser effect spectroscopy.
    Lin Y; Nageswara Rao BD
    Biochemistry; 2000 Apr; 39(13):3636-46. PubMed ID: 10736162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The binding of ATP and AMP to Escherichia coli adenylate kinase investigated by 1H and 15N NMR spectroscopy.
    Glushka J; Bârzu O; Sarfati RS; Kansal VK; Cowburn D
    Biochem Biophys Res Commun; 1990 Oct; 172(2):432-8. PubMed ID: 2241944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of adenine nucleotides bound to Escherichia coli adenylate kinase. 2. 31P and 13C relaxation measurements in the presence of cobalt(II) and manganese(II).
    Lin Y; Nageswara Rao BD
    Biochemistry; 2000 Apr; 39(13):3647-55. PubMed ID: 10736163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability.
    Couñago R; Shamoo Y
    Extremophiles; 2005 Apr; 9(2):135-44. PubMed ID: 15647886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexes of yeast adenylate kinase and nucleotides investigated by 1H NMR.
    Vetter IR; Konrad M; Rösch P
    Biochemistry; 1991 Apr; 30(17):4137-42. PubMed ID: 1850618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.