BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19029615)

  • 1. Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices.
    Ahn YH; Chen WM; Lee KY; Park KW; Lee SJ
    Biomed Mater; 2008 Dec; 3(4):044101. PubMed ID: 19029615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.
    Kim H; Lim DH; Oh HJ; Lee KY; Lee SJ
    Biomed Mater; 2011 Oct; 6(5):055005. PubMed ID: 21849724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.
    Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA
    J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ti2448 pedicle screw system augmentation for posterior lumbar interbody fusion.
    Wang Z; Fu S; Wu ZX; Zhang Y; Lei W
    Spine (Phila Pa 1976); 2013 Nov; 38(23):2008-15. PubMed ID: 23921332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw.
    Erbulut DU; Kiapour A; Oktenoglu T; Ozer AF; Goel VK
    J Biomech Eng; 2014 May; 136(5):051007. PubMed ID: 24599026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems.
    Fan W; Guo LX; Zhang M
    Eur Spine J; 2021 Aug; 30(8):2342-2350. PubMed ID: 33948750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis.
    Jahng TA; Kim YE; Moon KY
    Spine J; 2013 Jan; 13(1):85-94. PubMed ID: 23266148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization.
    Bozkuş H; Senoğlu M; Baek S; Sawa AG; Ozer AF; Sonntag VK; Crawford NR
    J Neurosurg Spine; 2010 Feb; 12(2):183-9. PubMed ID: 20121354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation.
    Kok D; Firkins PJ; Wapstra FH; Veldhuizen AG
    BMC Musculoskelet Disord; 2013 Sep; 14():269. PubMed ID: 24047109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of pedicle screw implantation depth and angle on the loading and stiffness of a spinal fusion assembly.
    Tsouknidas A
    Biomed Mater Eng; 2015; 25(4):425-33. PubMed ID: 26407204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical evaluation of a novel pedicle screw-based interspinous spacer: A finite element analysis.
    Chen HC; Wu JL; Huang SC; Zhong ZC; Chiu SL; Lai YS; Cheng CK
    Med Eng Phys; 2017 Aug; 46():27-32. PubMed ID: 28622909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of rigid, semi-rigid and flexible spinal stabilization devices: A finite element study.
    Biswas JK; Roy S; Rana M; Halder S
    Proc Inst Mech Eng H; 2019 Dec; 233(12):1292-1298. PubMed ID: 31608769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inverse effects of load transfer and load sharing on axial compressive stiffness.
    Haher TR; Yeung AW; Ottaviano DM; Merola AA; Caruso SA
    Spine J; 2001; 1(5):324-9; discussion 330. PubMed ID: 14588309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems.
    Brodke DS; Gollogly S; Bachus KN; Alexander Mohr R; Nguyen BK
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1794-801. PubMed ID: 12923465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical investigation of the effect of pedicle-based hybrid stabilization constructs: A finite element study.
    Mesbah M; Barkaoui A
    Proc Inst Mech Eng H; 2020 Sep; 234(9):931-941. PubMed ID: 32597299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigid and flexible spinal stabilization devices: a biomechanical comparison.
    Galbusera F; Bellini CM; Anasetti F; Ciavarro C; Lovi A; Brayda-Bruno M
    Med Eng Phys; 2011 May; 33(4):490-6. PubMed ID: 21177135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pedicle screw-based posterior dynamic stabilizers for degenerative spine: in vitro biomechanical testing and clinical outcomes.
    Chamoli U; Diwan AD; Tsafnat N
    J Biomed Mater Res A; 2014 Sep; 102(9):3324-40. PubMed ID: 24382799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of the effects of pedicle screw fixation nut loosening on lumbar interbody fusion based on the elasto-plateau plasticity of bone characteristics.
    Kim Y; Kim TW
    Spine (Phila Pa 1976); 2010 Mar; 35(6):599-606. PubMed ID: 20139810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.