These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 19029617)
1. RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity. Choi WS; Bae JW; Lim HR; Joung YK; Park JC; Kwon IK; Park KD Biomed Mater; 2008 Dec; 3(4):044104. PubMed ID: 19029617 [TBL] [Abstract][Full Text] [Related]
2. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane. Lin YS; Wang SS; Chung TW; Wang YH; Chiou SH; Hsu JJ; Chou NK; Hsieh KH; Chu SH Artif Organs; 2001 Aug; 25(8):617-21. PubMed ID: 11531712 [TBL] [Abstract][Full Text] [Related]
3. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Wang DA; Ji J; Sun YH; Shen JC; Feng LX; Elisseeff JH Biomacromolecules; 2002; 3(6):1286-95. PubMed ID: 12425667 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides. Lin HB; Sun W; Mosher DF; García-Echeverría C; Schaufelberger K; Lelkes PI; Cooper SL J Biomed Mater Res; 1994 Mar; 28(3):329-42. PubMed ID: 8077248 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Chung TW; Liu DZ; Wang SY; Wang SS Biomaterials; 2003 Nov; 24(25):4655-61. PubMed ID: 12951008 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of RGD modification on collagen matrix. Ren D; Hou S; Wang H; Luo D; Zhang L Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(3):293-303. PubMed ID: 16809131 [TBL] [Abstract][Full Text] [Related]
7. Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering. Jiang X; Wang K; Ding M; Li J; Tan H; Wang Z; Fu Q J Mater Sci Mater Med; 2011 Apr; 22(4):819-27. PubMed ID: 21360121 [TBL] [Abstract][Full Text] [Related]
8. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Oya K; Tanaka Y; Saito H; Kurashima K; Nogi K; Tsutsumi H; Tsutsumi Y; Doi H; Nomura N; Hanawa T Biomaterials; 2009 Mar; 30(7):1281-6. PubMed ID: 19091397 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Guan J; Wagner WR Biomacromolecules; 2005; 6(5):2833-42. PubMed ID: 16153125 [TBL] [Abstract][Full Text] [Related]
10. Endothelial cell attachment to the gamma irradiated small diameter polyurethane vascular grafts. Hsu SH; Chuang SC; Chen CH; Chen DC Biomed Mater Eng; 2006; 16(6):397-404. PubMed ID: 17119278 [TBL] [Abstract][Full Text] [Related]
11. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications. Wang DA; Feng LX; Ji J; Sun YH; Zheng XX; Elisseeff JH J Biomed Mater Res A; 2003 Jun; 65(4):498-510. PubMed ID: 12761841 [TBL] [Abstract][Full Text] [Related]
12. The preparation and performance of a new polyurethane vascular prosthesis. He W; Hu Z; Xu A; Liu R; Yin H; Wang J; Wang S Cell Biochem Biophys; 2013 Jul; 66(3):855-66. PubMed ID: 23456453 [TBL] [Abstract][Full Text] [Related]
13. Effects of radiofrequency glow discharge and oligopeptides on the attachment of human endothelial cells to polyurethane. Patterson RB; Messier A; Valentini RF ASAIO J; 1995; 41(3):M625-9. PubMed ID: 8573880 [TBL] [Abstract][Full Text] [Related]
14. In vivo modulation of foreign body response on polyurethane by surface entrapment technique. Khandwekar AP; Patil DP; Hardikar AA; Shouche YS; Doble M J Biomed Mater Res A; 2010 Nov; 95(2):413-23. PubMed ID: 20648535 [TBL] [Abstract][Full Text] [Related]
15. Photografting of poly(hydroxylethyl acrylate) onto porous polyurethane scaffolds to improve their endothelial cell compatibility. Gao C; Hu X; Hong Y; Guan J; Shen J J Biomater Sci Polym Ed; 2003; 14(9):937-50. PubMed ID: 14661871 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix. Park KH; Na K; Chung HM Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141 [TBL] [Abstract][Full Text] [Related]
17. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance. Chung TW; Yang MG; Liu DZ; Chen WP; Pan CI; Wang SS J Biomed Mater Res A; 2005 Feb; 72(2):213-9. PubMed ID: 15578647 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Patency and Endothelialization of Small-Caliber Vascular Grafts Fabricated by Coimmobilization of Heparin and Cell-Adhesive Peptides. Choi WS; Joung YK; Lee Y; Bae JW; Park HK; Park YH; Park JC; Park KD ACS Appl Mater Interfaces; 2016 Feb; 8(7):4336-46. PubMed ID: 26824876 [TBL] [Abstract][Full Text] [Related]
19. Endothelialization of polyurethanes: Surface silanization and immobilization of REDV peptide. Butruk-Raszeja BA; Dresler MS; Kuźmińska A; Ciach T Colloids Surf B Biointerfaces; 2016 Aug; 144():335-343. PubMed ID: 27110909 [TBL] [Abstract][Full Text] [Related]
20. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. Grasl C; Bergmeister H; Stoiber M; Schima H; Weigel G J Biomed Mater Res A; 2010 May; 93(2):716-23. PubMed ID: 19609874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]