These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19029727)

  • 1. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation.
    Uellendahl H; Wang G; Møller HB; Jørgensen U; Skiadas IV; Gavala HN; Ahring BK
    Water Sci Technol; 2008; 58(9):1841-7. PubMed ID: 19029727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.
    Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W
    Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogas from energy crops--optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions.
    Seppälä M; Paavola T; Lehtomäki A; Pakarinen O; Rintala J
    Water Sci Technol; 2008; 58(9):1857-63. PubMed ID: 19029729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking.
    Jurado E; Gavala HN; Skiadas IV
    Environ Technol; 2013; 34(13-16):2069-75. PubMed ID: 24350460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.
    Wang G; Gavala HN; Skiadas IV; Ahring BK
    Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.
    Lübken M; Wichern M; Schlattmann M; Gronauer A; Horn H
    Water Res; 2007 Oct; 41(18):4085-96. PubMed ID: 17631938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.
    Riva C; Schievano A; D'Imporzano G; Adani F
    Waste Manag; 2014 Aug; 34(8):1429-35. PubMed ID: 24841069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic engineering of energy crops: a strategy for biofuel production in China.
    Xie G; Peng L
    J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing an energy balance for crop-based digestion.
    Salter A; Banks CJ
    Water Sci Technol; 2009; 59(6):1053-60. PubMed ID: 19342799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable sunlight to biogas is via marginal organics.
    Shilton A; Guieysse B
    Curr Opin Biotechnol; 2010 Jun; 21(3):287-91. PubMed ID: 20378331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests.
    Hinken L; Urban I; Haun E; Urban I; Weichgrebe D; Rosenwinkel KH
    Water Sci Technol; 2008; 58(7):1453-9. PubMed ID: 18957759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas production: current state and perspectives.
    Weiland P
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):849-60. PubMed ID: 19777226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.
    Bauer A; Mayr H; Hopfner-Sixt K; Amon T
    J Biotechnol; 2009 Jun; 142(1):56-63. PubMed ID: 19480948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion.
    Lindorfer H; Pérez López C; Resch C; Braun R; Kirchmayr R
    Water Sci Technol; 2007; 56(10):55-63. PubMed ID: 18048977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituting energy crops with organic wastes and agro-industrial residues for biogas production.
    Schievano A; D'Imporzano G; Adani F
    J Environ Manage; 2009 Jun; 90(8):2537-41. PubMed ID: 19254824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand.
    Papong S; Malakul P
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S112-8. PubMed ID: 19766487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.
    Gerin PA; Vliegen F; Jossart JM
    Bioresour Technol; 2008 May; 99(7):2620-7. PubMed ID: 17574409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of energy crops alternative to maize for biogas production in the Greater Region.
    Mayer F; Gerin PA; Noo A; Lemaigre S; Stilmant D; Schmit T; Leclech N; Ruelle L; Gennen J; von Francken-Welz H; Foucart G; Flammang J; Weyland M; Delfosse P
    Bioresour Technol; 2014 Aug; 166():358-67. PubMed ID: 24929279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational results of an agricultural biogas plant equipped with modern instrumentation and automation.
    Wiese J; Kujawski O
    Water Sci Technol; 2008; 57(6):803-8. PubMed ID: 18413937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment.
    Sørensen A; Teller PJ; Hilstrøm T; Ahring BK
    Bioresour Technol; 2008 Sep; 99(14):6602-7. PubMed ID: 18164954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.