BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19029814)

  • 1. Francisella tularensis regulates autophagy-related host cell signaling pathways.
    Cremer TJ; Amer A; Tridandapani S; Butchar JP
    Autophagy; 2009 Jan; 5(1):125-8. PubMed ID: 19029814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes.
    Gillette DD; Curry HM; Cremer T; Ravneberg D; Fatehchand K; Shah PA; Wewers MD; Schlesinger LS; Butchar JP; Tridandapani S; Gavrilin MA
    Front Cell Infect Microbiol; 2014; 4():45. PubMed ID: 24783062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion.
    Butchar JP; Cremer TJ; Clay CD; Gavrilin MA; Wewers MD; Marsh CB; Schlesinger LS; Tridandapani S
    PLoS One; 2008 Aug; 3(8):e2924. PubMed ID: 18698339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response.
    Cremer TJ; Ravneberg DH; Clay CD; Piper-Hunter MG; Marsh CB; Elton TS; Gunn JS; Amer A; Kanneganti TD; Schlesinger LS; Butchar JP; Tridandapani S
    PLoS One; 2009 Dec; 4(12):e8508. PubMed ID: 20041145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole genome transcriptomics reveals global effects including up-regulation of Francisella pathogenicity island gene expression during active stringent response in the highly virulent Francisella tularensis subsp. tularensis SCHU S4.
    Murch AL; Skipp PJ; Roach PL; Oyston PCF
    Microbiology (Reading); 2017 Nov; 163(11):1664-1679. PubMed ID: 29034854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During
    Hoang KV; Rajaram MVS; Curry HM; Gavrilin MA; Wewers MD; Schlesinger LS
    Front Immunol; 2018; 9():561. PubMed ID: 29632532
    [No Abstract]   [Full Text] [Related]  

  • 7. Type A Francisella tularensis acid phosphatases contribute to pathogenesis.
    Mohapatra NP; Soni S; Rajaram MV; Strandberg KL; Gunn JS
    PLoS One; 2013; 8(2):e56834. PubMed ID: 23457625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of TolC Orthologs to
    Kopping EJ; Doyle CR; Sampath V; Thanassi DG
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30670554
    [No Abstract]   [Full Text] [Related]  

  • 9. Zinc Acquisition Mechanisms Differ between Environmental and Virulent Francisella Species.
    Moreau GB; Qin A; Mann BJ
    J Bacteriol; 2018 Feb; 200(4):. PubMed ID: 29109188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes.
    Barel M; Meibom K; Dubail I; Botella J; Charbit A
    Cell Microbiol; 2012 Nov; 14(11):1769-83. PubMed ID: 22804921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Analysis of Genes Essential for Francisella tularensis Schu S4 Growth
    Ireland PM; Bullifent HL; Senior NJ; Southern SJ; Yang ZR; Ireland RE; Nelson M; Atkins HS; Titball RW; Scott AE
    J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30642993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel receptor - ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu.
    Barel M; Hovanessian AG; Meibom K; Briand JP; Dupuis M; Charbit A
    BMC Microbiol; 2008 Sep; 8():145. PubMed ID: 18789156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Substrate Usage and Metabolic Fluxes in
    Chen F; Rydzewski K; Kutzner E; Häuslein I; Schunder E; Wang X; Meighen-Berger K; Grunow R; Eisenreich W; Heuner K
    Front Cell Infect Microbiol; 2017; 7():275. PubMed ID: 28680859
    [No Abstract]   [Full Text] [Related]  

  • 14. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.
    Wallqvist A; Memišević V; Zavaljevski N; Pieper R; Rajagopala SV; Kwon K; Yu C; Hoover TA; Reifman J
    BMC Genomics; 2015 Dec; 16():1106. PubMed ID: 26714771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.
    Faron M; Fletcher JR; Rasmussen JA; Apicella MA; Jones BD
    PLoS One; 2015; 10(5):e0127458. PubMed ID: 26010977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaccine-Mediated Mechanisms Controlling Replication of
    Eneslätt K; Golovliov I; Rydén P; Sjöstedt A
    Front Cell Infect Microbiol; 2018; 8():27. PubMed ID: 29468144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Francisella tularensis Schu S4 defined mutants as live-attenuated vaccine candidates.
    Santiago AE; Mann BJ; Qin A; Cunningham AL; Cole LE; Grassel C; Vogel SN; Levine MM; Barry EM
    Pathog Dis; 2015 Aug; 73(6):ftv036. PubMed ID: 25986219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptional Analyses of Francisella tularensis and Francisella novicida.
    Sarva ST; Waldo RH; Belland RJ; Klose KE
    PLoS One; 2016; 11(8):e0158631. PubMed ID: 27537327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A MyD88-dependent IFNγR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge.
    Pietras EM; Miller LS; Johnson CT; O'Connell RM; Dempsey PW; Cheng G
    Cell Res; 2011 Jul; 21(7):1068-79. PubMed ID: 21467996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription Elongation Factor GreA Plays a Key Role in Cellular Invasion and Virulence of Francisella tularensis subsp. novicida.
    Cui G; Wang J; Qi X; Su J
    Sci Rep; 2018 May; 8(1):6895. PubMed ID: 29720697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.