These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 19030062)
1. Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene. Dressel M; Gompf B; Faltermeier D; Tripathi AK; Pflaum J; Schubert M Opt Express; 2008 Nov; 16(24):19770-8. PubMed ID: 19030062 [TBL] [Abstract][Full Text] [Related]
2. Curvefitting Imaginary Components of Optical Properties: Restrictions on the Lineshape Due to Causality. Keefe CD J Mol Spectrosc; 2001 Feb; 205(2):261-268. PubMed ID: 11162213 [TBL] [Abstract][Full Text] [Related]
3. Causality and Kramers-Kronig relations for waveguides. Haakestad M; Skaar J Opt Express; 2005 Nov; 13(24):9922-34. PubMed ID: 19503203 [TBL] [Abstract][Full Text] [Related]
4. Kramers-Kronig relations and sum rules in nonlinear optical spectroscopy. Peiponen KE; Lucarini V; Saarinen JJ; Vartiainen E Appl Spectrosc; 2004 May; 58(5):499-509. PubMed ID: 15165324 [TBL] [Abstract][Full Text] [Related]
5. Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles. Mobley J; Waters KR; Hughes MS; Hall CS; Marsh JN; Brandenburger GH; Miller JG J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2091-106. PubMed ID: 11108346 [TBL] [Abstract][Full Text] [Related]
6. On a time-domain representation of the Kramers-Kronig dispersion relations. Waters KR; Hughes MS; Brandenburger GH; Miller JG J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2114-9. PubMed ID: 11108348 [TBL] [Abstract][Full Text] [Related]
7. Using the Kramers-Kronig method to determine optical constants and evaluating its suitability as a linear transform for near-normal front-surface reflectance spectra. Kocak A; Berets SL; Milosevic V; Milosevic M Appl Spectrosc; 2006 Sep; 60(9):1004-7. PubMed ID: 17002825 [TBL] [Abstract][Full Text] [Related]
9. Kramers-Kronig analysis of attenuation and dispersion in trabecular bone. Waters KR; Hoffmeister BK J Acoust Soc Am; 2005 Dec; 118(6):3912-20. PubMed ID: 16419833 [TBL] [Abstract][Full Text] [Related]
10. Differential forms of the Kramers-Krönig dispersion relations. Waters KR; Hughes MS; Mobley J; Miller JG IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jan; 50(1):68-76. PubMed ID: 12578137 [TBL] [Abstract][Full Text] [Related]
11. Ellipsometry: dielectric functions of anisotropic crystals and symmetry. Jellison GE; Podraza NJ; Shan A J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2225-2237. PubMed ID: 36520740 [TBL] [Abstract][Full Text] [Related]
12. Inversion of ellipsometry data using constrained spline analysis. Gilliot M Appl Opt; 2017 Feb; 56(4):1173-1182. PubMed ID: 28158131 [TBL] [Abstract][Full Text] [Related]
13. Is the Kramers-Kronig relationship between ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase cancellation? Bauer AQ; Marutyan KR; Holland MR; Miller JG J Acoust Soc Am; 2007 Jul; 122(1):222-8. PubMed ID: 17614481 [TBL] [Abstract][Full Text] [Related]
18. On the volume-dependence of the index of refraction from the viewpoint of the complex dielectric function and the Kramers-Kronig relation. Rocquefelte X; Jobic S; Whangbo MH J Phys Chem B; 2006 Feb; 110(6):2511-4. PubMed ID: 16471848 [TBL] [Abstract][Full Text] [Related]
19. Optical characterization of porous silicon and crystalline silicon by the Kramers-Kronig method. Morteza Ali A; Dariani RS; Asghari S; Bayindir Z Appl Opt; 2007 Feb; 46(4):495-501. PubMed ID: 17230241 [TBL] [Abstract][Full Text] [Related]
20. A unified framework for the numerical evaluation of the Q-subtractive Kramers-Kronig relations and application to the reconstruction of optical constants of quartz. Nakov S; Sobakinskaya E; Müh F Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122157. PubMed ID: 36473297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]