BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19030232)

  • 1. Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity.
    Managbanag JR; Witten TM; Bonchev D; Fox LA; Tsuchiya M; Kennedy BK; Kaeberlein M
    PLoS One; 2008; 3(11):e3802. PubMed ID: 19030232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches.
    Huang T; Zhang J; Xu ZP; Hu LL; Chen L; Shao JL; Zhang L; Kong XY; Cai YD; Chou KC
    Biochimie; 2012 Apr; 94(4):1017-25. PubMed ID: 22239951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genomic analysis of chronological longevity factors in budding yeast.
    Burtner CR; Murakami CJ; Olsen B; Kennedy BK; Kaeberlein M
    Cell Cycle; 2011 May; 10(9):1385-96. PubMed ID: 21447998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species.
    Smith ED; Tsuchiya M; Fox LA; Dang N; Hu D; Kerr EO; Johnston ED; Tchao BN; Pak DN; Welton KL; Promislow DE; Thomas JH; Kaeberlein M; Kennedy BK
    Genome Res; 2008 Apr; 18(4):564-70. PubMed ID: 18340043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genes determining yeast replicative life span in a long-lived genetic background.
    Kaeberlein M; Kirkland KT; Fields S; Kennedy BK
    Mech Ageing Dev; 2005 Apr; 126(4):491-504. PubMed ID: 15722108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection for maximum longevity in mice.
    Harrison DE; Roderick TH
    Exp Gerontol; 1997; 32(1-2):65-78. PubMed ID: 9088903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human protein interaction network shows conservation of aging processes between human and invertebrate species.
    Bell R; Hubbard A; Chettier R; Chen D; Miller JP; Kapahi P; Tarnopolsky M; Sahasrabuhde S; Melov S; Hughes RE
    PLoS Genet; 2009 Mar; 5(3):e1000414. PubMed ID: 19293945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging.
    Qin H
    BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin.
    Bitterman KJ; Medvedik O; Sinclair DA
    Microbiol Mol Biol Rev; 2003 Sep; 67(3):376-99, table of contents. PubMed ID: 12966141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent roles of RAS1 and RAS2 in yeast longevity.
    Sun J; Kale SP; Childress AM; Pinswasdi C; Jazwinski SM
    J Biol Chem; 1994 Jul; 269(28):18638-45. PubMed ID: 8034612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional genomics of dietary restriction and longevity in yeast.
    Campos SE; DeLuna A
    Mech Ageing Dev; 2019 Apr; 179():36-43. PubMed ID: 30790575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae.
    Borklu Yucel E; Ulgen KO
    PLoS One; 2011; 6(12):e29284. PubMed ID: 22216232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review.
    Gershon H; Gershon D
    Mech Ageing Dev; 2000 Dec; 120(1-3):1-22. PubMed ID: 11087900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles.
    Zhang Y; Lv K; Wang S; Su J; Meng D
    Comput Math Methods Med; 2015; 2015():621264. PubMed ID: 26839582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An intervention resembling caloric restriction prolongs life span and retards aging in yeast.
    Jiang JC; Jaruga E; Repnevskaya MV; Jazwinski SM
    FASEB J; 2000 Nov; 14(14):2135-7. PubMed ID: 11024000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae.
    Kim S; Benguria A; Lai CY; Jazwinski SM
    Mol Biol Cell; 1999 Oct; 10(10):3125-36. PubMed ID: 10512855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast.
    Campos SE; Avelar-Rivas JA; Garay E; Juárez-Reyes A; DeLuna A
    Aging Cell; 2018 Jun; 17(3):e12749. PubMed ID: 29575540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging.
    Zhou Z; Liu Y; Feng Y; Klepin S; Tsimring LS; Pillus L; Hasty J; Hao N
    Science; 2023 Apr; 380(6643):376-381. PubMed ID: 37104589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring genetic suppression interactions on a global scale.
    van Leeuwen J; Pons C; Mellor JC; Yamaguchi TN; Friesen H; Koschwanez J; Ušaj MM; Pechlaner M; Takar M; Ušaj M; VanderSluis B; Andrusiak K; Bansal P; Baryshnikova A; Boone CE; Cao J; Cote A; Gebbia M; Horecka G; Horecka I; Kuzmin E; Legro N; Liang W; van Lieshout N; McNee M; San Luis BJ; Shaeri F; Shuteriqi E; Sun S; Yang L; Youn JY; Yuen M; Costanzo M; Gingras AC; Aloy P; Oostenbrink C; Murray A; Graham TR; Myers CL; Andrews BJ; Roth FP; Boone C
    Science; 2016 Nov; 354(6312):. PubMed ID: 27811238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HST2 mediates SIR2-independent life-span extension by calorie restriction.
    Lamming DW; Latorre-Esteves M; Medvedik O; Wong SN; Tsang FA; Wang C; Lin SJ; Sinclair DA
    Science; 2005 Sep; 309(5742):1861-4. PubMed ID: 16051752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.