These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19030592)

  • 1. Protein-induced geometric constraints and charge transfer in bacteriochlorophyll-histidine complexes in LH2.
    Wawrzyniak PK; Alia A; Schaap RG; Heemskerk MM; de Groot HJ; Buda F
    Phys Chem Chem Phys; 2008 Dec; 10(46):6971-8. PubMed ID: 19030592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective chemical shift assignment of B800 and B850 bacteriochlorophylls in uniformly [13C,15N]-labeled light-harvesting complexes by solid-state NMR spectroscopy at ultra-high magnetic field.
    van Gammeren AJ; Buda F; Hulsbergen FB; Kiihne S; Hollander JG; Egorova-Zachernyuk TA; Fraser NJ; Cogdell RJ; de Groot HJ
    J Am Chem Soc; 2005 Mar; 127(9):3213-9. PubMed ID: 15740162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides.
    Polívka T; Niedzwiedzki D; Fuciman M; Sundström V; Frank HA
    J Phys Chem B; 2007 Jun; 111(25):7422-31. PubMed ID: 17547450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance secondary shifts of a light-harvesting 2 complex reveal local backbone perturbations induced by its higher-order interactions.
    Pandit A; Wawrzyniak PK; van Gammeren AJ; Buda F; Ganapathy S; de Groot HJ
    Biochemistry; 2010 Jan; 49(3):478-86. PubMed ID: 19954238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective chemical shift assignment of bacteriochlorophyll a in uniformly [13C-15N]-labeled light-harvesting 1 complexes by solid-state NMR in ultrahigh magnetic field.
    Pandit A; Buda F; van Gammeren AJ; Ganapathy S; de Groot HJ
    J Phys Chem B; 2010 May; 114(18):6207-15. PubMed ID: 20408539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems.
    Hyeon-Deuk K; Tanimura Y; Cho M
    J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light harvesting complex 2: evidence for subtle energetic optimization by purple bacteria.
    Jang S; Newton MD; Silbey RJ
    J Phys Chem B; 2007 Jun; 111(24):6807-14. PubMed ID: 17439170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study.
    Wormit M; Dreuw A
    J Phys Chem B; 2006 Nov; 110(47):24200-6. PubMed ID: 17125392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteronuclear 2D (1H-13C) MAS NMR resolves the electronic structure of coordinated histidines in light-harvesting complex II: assessment of charge transfer and electronic delocalization effect.
    Alia ; Matysik J; de Boer I; Gast P; van Gorkom HJ; de Groot HJ
    J Biomol NMR; 2004 Feb; 28(2):157-64. PubMed ID: 14755159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment.
    Braun P; Olsen JD; Strohmann B; Hunter CN; Scheer H
    J Mol Biol; 2002 May; 318(4):1085-95. PubMed ID: 12054804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved methods in biophysics. 4. Broadband pump-probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis.
    Cerullo G; Manzoni C; Lüer L; Polli D
    Photochem Photobiol Sci; 2007 Feb; 6(2):135-44. PubMed ID: 17277836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane protein stability: high pressure effects on the structure and chromophore-binding properties of the light-harvesting complex LH2.
    Gall A; Ellervee A; Sturgis JN; Fraser NJ; Cogdell RJ; Freiberg A; Robert B
    Biochemistry; 2003 Nov; 42(44):13019-26. PubMed ID: 14596617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic analogues of the histidine-chlorophyll complex: a NMR study to mimic structural features of the photosynthetic reaction center and the light-harvesting complex.
    van Gammeren AJ; Hulsbergen FB; Erkelens C; De Groot HJ
    J Biol Inorg Chem; 2004 Jan; 9(1):109-17. PubMed ID: 14663650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.
    Oda I; Hirata K; Watanabe S; Shibata Y; Kajino T; Fukushima Y; Iwai S; Itoh S
    J Phys Chem B; 2006 Jan; 110(3):1114-20. PubMed ID: 16471652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.
    Jang S; Rivera E; Montemayor D
    J Phys Chem Lett; 2015 Mar; 6(6):928-34. PubMed ID: 26262847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh field MAS NMR dipolar correlation spectroscopy of the histidine residues in light-harvesting complex II from photosynthetic bacteria reveals partial internal charge transfer in the B850/His complex.
    Alia ; Matysik J; Soede-Huijbregts C; Baldus M; Raap J; Lugtenburg J; Gast P; van Gorkom HJ; Hoff AJ; de Groot HJ
    J Am Chem Soc; 2001 May; 123(20):4803-9. PubMed ID: 11457290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes.
    Janosi L; Kosztin I; Damjanović A
    J Chem Phys; 2006 Jul; 125(1):014903. PubMed ID: 16863329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing density functional theory in real-time and real-space as a tool for studying bacteriochlorophylls and the light-harvesting complex 2.
    Schelter I; Foerster JM; Gardiner AT; Roszak AW; Cogdell RJ; Ullmann GM; de Queiroz TB; Kümmel S
    J Chem Phys; 2019 Oct; 151(13):134114. PubMed ID: 31594320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution.
    Polli D; Cerullo G; Lanzani G; De Silvestri S; Hashimoto H; Cogdell RJ
    Biophys J; 2006 Apr; 90(7):2486-97. PubMed ID: 16428274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Two-photon excitation fluorescence spectrum of the light-harvesting complex LH2 from Chromatium minutissimum within 650-745 nm range is determined by two-photon absorption of bacteriochlorophyll rather than of carotenoids].
    Krikunova MA; Leupold D; Rini M; Voigt B; Moskalenko AA; Toropygina OA; Razzhivin AP
    Biofizika; 2002; 47(6):1015-20. PubMed ID: 12500564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.