BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 19030600)

  • 1. Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme.
    Ferreira DE; De Almeida WB; Neves A; Rocha WR
    Phys Chem Chem Phys; 2008 Dec; 10(46):7039-46. PubMed ID: 19030600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsymmetrical Fe(III)Co(II) and Ga(III)Co(II) complexes as chemical hydrolases: biomimetic models for purple acid phosphatases (PAPs).
    Xavier FR; Neves A; Casellato A; Peralta RA; Bortoluzzi AJ; Szpoganicz B; Severino PC; Terenzi H; Tomkowicz Z; Ostrovsky S; Haase W; Ozarowski A; Krzystek J; Telser J; Schenk G; Gahan LR
    Inorg Chem; 2009 Aug; 48(16):7905-21. PubMed ID: 19603814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition state analogues for nucleotidyl transfer reactions: Structure and stability of pentavalent vanadate and phosphate ester dianions.
    Borden J; Crans DC; Florián J
    J Phys Chem B; 2006 Aug; 110(30):14988-99. PubMed ID: 16869614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical examination of Mg(2+)-mediated hydrolysis of a phosphodiester linkage as proposed for the hammerhead ribozyme.
    Torres RA; Himo F; Bruice TC; Noodleman L; Lovell T
    J Am Chem Soc; 2003 Aug; 125(32):9861-7. PubMed ID: 12904054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the hydrolysis of mono-phosphate and tri-phosphate in gas phase and aqueous solution.
    Wang YN; Topol IA; Collins JR; Burt SK
    J Am Chem Soc; 2003 Oct; 125(43):13265-73. PubMed ID: 14570503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkali metals (Li, Na, and K) in methyl phosphodiester hydrolysis.
    Pinjari RV; Kaptan SS; Gejji SP
    Phys Chem Chem Phys; 2009 Jul; 11(26):5253-62. PubMed ID: 19551192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleophilic attack on phosphate diesters: a density functional study of in-line reactivity in dianionic, monoanionic, and neutral systems.
    Lopez X; Dejaegere A; Leclerc F; York DM; Karplus M
    J Phys Chem B; 2006 Jun; 110(23):11525-39. PubMed ID: 16771429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dineopentyl phosphate hydrolysis: evidence for stepwise water attack.
    Kamerlin SC; Williams NH; Warshel A
    J Org Chem; 2008 Sep; 73(18):6960-9. PubMed ID: 18729515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ga(III) complexes as models for the M(III) site of purple acid phosphatase: ligand effects on the hydrolytic reactivity toward bis(2,4-dinitrophenyl) phosphate.
    Coleman F; Hynes MJ; Erxleben A
    Inorg Chem; 2010 Jul; 49(14):6725-33. PubMed ID: 20565083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative theoretical studies of the phosphomonoester hydrolysis mechanism by purple acid phosphatases.
    Retegan M; Milet A; Jamet H
    J Phys Chem A; 2010 Jul; 114(26):7110-6. PubMed ID: 20550096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.
    Esteves LF; Rey NA; Dos Santos HF; Costa LA
    Inorg Chem; 2016 Mar; 55(6):2806-18. PubMed ID: 26934384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme-phosphate-fluoride complex as a model for the active enzyme-substrate-hydroxide complex.
    Pinkse MW; Merkx M; Averill BA
    Biochemistry; 1999 Aug; 38(31):9926-36. PubMed ID: 10433699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dianionic phosphorane intermediate and transition states in an associative A(N)+D(N) mechanism for the ribonucleaseA hydrolysis reaction.
    Elsässer B; Valiev M; Weare JH
    J Am Chem Soc; 2009 Mar; 131(11):3869-71. PubMed ID: 19245210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical evaluation of the substrate-assisted catalysis mechanism for the hydrolysis of phosphate monoester dianions.
    Iché-Tarrat N; Ruiz-Lopez M; Barthelat JC; Vigroux A
    Chemistry; 2007; 13(13):3617-29. PubMed ID: 17290469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional calculations of ATP systems. 2. ATP hydrolysis at the active site of actin.
    Akola J; Jones RO
    J Phys Chem B; 2006 Apr; 110(15):8121-9. PubMed ID: 16610915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical studies of the hydroxide-catalyzed P-O cleavage reactions of neutral phosphate triesters and diesters in aqueous solution: examination of the changes induced by H/Me substitution.
    Iché-Tarrat N; Barthelat JC; Rinaldi D; Vigroux A
    J Phys Chem B; 2005 Dec; 109(47):22570-80. PubMed ID: 16853939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline hydrolysis of ethylene phosphate: an ab initio study by supermolecule model and polarizable continuum approach.
    Xia F; Zhu H
    J Comput Chem; 2011 Sep; 32(12):2545-54. PubMed ID: 21598282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of N7 protonation on the mechanism of the N-glycosidic bond hydrolysis in 2'-deoxyguanosine. A theoretical study.
    Rios-Font R; Rodríguez-Santiago L; Bertran J; Sodupe M
    J Phys Chem B; 2007 May; 111(21):6071-7. PubMed ID: 17477565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.