These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 19030600)

  • 21. Designing an appropriate computational model for DNA nucleoside hydrolysis: a case study of 2'-deoxyuridine.
    Przybylski JL; Wetmore SD
    J Phys Chem B; 2009 May; 113(18):6533-42. PubMed ID: 19358541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical study on the hydrolysis mechanism of N,N-dimethyl-N'-(2-oxo-1, 2-dihydro-pyrimidinyl)formamidine: water-assisted mechanism and cluster-continuum model.
    Wu Y; Jin L; Xue Y; Xie DQ; Kim CK; Guo Y; Yan GS
    J Comput Chem; 2008 Jun; 29(8):1222-32. PubMed ID: 18161688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterodinuclear Fe(III)Zn(II)-bioinspired complex supported on 3-aminopropyl silica. Efficient hydrolysis of phosphate diester bonds.
    Piovezan C; Jovito R; Bortoluzzi AJ; Terenzi H; Fischer FL; Severino PC; Pich CT; Azzolini GG; Peralta RA; Rossi LM; Neves A
    Inorg Chem; 2010 Mar; 49(6):2580-2. PubMed ID: 20163108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the role of the conserved aspartate in the hydrolysis of the phosphocysteine intermediate of the low molecular weight tyrosine phosphatase.
    Asthagiri D; Liu T; Noodleman L; Van Etten RL; Bashford D
    J Am Chem Soc; 2004 Oct; 126(39):12677-84. PubMed ID: 15453802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study.
    Díaz N; Suárez D
    J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A DFT study on the formation of a phosphohistidine intermediate in prostatic acid phosphatase.
    Sharma S; Rauk A; Juffer AH
    J Am Chem Soc; 2008 Jul; 130(30):9708-16. PubMed ID: 18605729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations.
    Wong KY; Gao J
    Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling protein splicing: reaction pathway for C-terminal splice and intein scission.
    Mujika JI; Lopez X; Mulholland AJ
    J Phys Chem B; 2009 Apr; 113(16):5607-16. PubMed ID: 19326906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational DFT investigation of vicinal amide group anchimeric assistance in ether cleavage.
    Calvaresi M; Rinaldi S; Arcelli A; Garavelli M
    J Org Chem; 2008 Mar; 73(6):2066-73. PubMed ID: 18288862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid-DFT study on electronic structures of the active site of sweet potato purple acid phosphatase: the origin of stronger antiferromagnetic couplings than other purple acid phosphatases.
    Koizumi K; Yamaguchi K; Nakamura H; Takano Y
    J Phys Chem A; 2009 Apr; 113(17):5099-104. PubMed ID: 19354205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rosmarinic acid determination using biomimetic sensor based on purple acid phosphatase mimetic.
    Santhiago M; Peralta RA; Neves A; Micke GA; Vieira IC
    Anal Chim Acta; 2008 Apr; 613(1):91-7. PubMed ID: 18374706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A theoretical study on the hydrolysis process of the antimetastatic ruthenium(III) complex NAMI-A.
    Chen J; Chen L; Liao S; Zheng K; Ji L
    J Phys Chem B; 2007 Jul; 111(27):7862-9. PubMed ID: 17579393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic mechanism of DNA backbone cleavage by the restriction enzyme EcoRV: a quantum mechanical/molecular mechanical analysis.
    Imhof P; Fischer S; Smith JC
    Biochemistry; 2009 Sep; 48(38):9061-75. PubMed ID: 19678693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.
    Yao Y; Li ZS
    Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomistic details of the Catalytic Mechanism of Fe(III)-Zn(II) Purple Acid Phosphatase.
    Alberto ME; Marino T; Ramos MJ; Russo N
    J Chem Theory Comput; 2010 Aug; 6(8):2424-33. PubMed ID: 26613496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum mechanical/effective fragment potential (QM/EFP) study of phosphate monoester aminolysis in aqueous solution.
    Ferreira DE; Florentino BP; Rocha WR; Nome F
    J Phys Chem B; 2009 Nov; 113(44):14831-6. PubMed ID: 19817372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical study of the mechanism for peptide hydrolysis by thermolysin.
    Pelmenschikov V; Blomberg MR; Siegbahn PE
    J Biol Inorg Chem; 2002 Mar; 7(3):284-98. PubMed ID: 11935352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QM/MM simulation (B3LYP) of the RNase A cleavage-transesterification reaction supports a triester A(N) + D(N) associative mechanism with an O2' H internal proton transfer.
    Elsässer B; Fels G; Weare JH
    J Am Chem Soc; 2014 Jan; 136(3):927-36. PubMed ID: 24372083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is the peptide bond formation activated by Cu(2+) interactions? Insights from density functional calculations.
    Rimola A; Rodríguez-Santiago L; Ugliengo P; Sodupe M
    J Phys Chem B; 2007 May; 111(20):5740-7. PubMed ID: 17469869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.