BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 19030768)

  • 1. Determination of toxic trace elements in foodstuffs, soils and sediments of bangladesh using instrumental neutron activation analysis technique.
    Latif SA; Afroj D; Hossain SM; Uddin MS; Islam MA; Begum K; Oura Y; Ebihara M; Katada M
    Bull Environ Contam Toxicol; 2009 Mar; 82(3):384-8. PubMed ID: 19030768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta.
    Su T; Shu S; Shi H; Wang J; Adams C; Witt EC
    Environ Pollut; 2008 Dec; 156(3):944-50. PubMed ID: 18757126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The level of selenium and some other trace elements in different Libyan arable soils using instrumental neutron activation analysis.
    El-Ghawi UM; Al-Fakhri SM; Al-Sadeq AA; Bejey MM; Doubali KK
    Biol Trace Elem Res; 2007 Oct; 119(1):89-96. PubMed ID: 17914223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace element concentrations in mangrove sediments in the Sundarbans, Bangladesh.
    Awal MA; Hale WH; Stern B
    Mar Pollut Bull; 2009 Dec; 58(12):1944-8. PubMed ID: 19836810
    [No Abstract]   [Full Text] [Related]  

  • 5. Determination of selected trace elements in foodstuffs and biological materials by destructive neutron activation analysis.
    Bayat I; Etehadiyan M; Ansar M
    Nutrition; 1995; 11(5 Suppl):535-7. PubMed ID: 8748216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils.
    Rodrigues SM; Henriques B; Coimbra J; Ferreira da Silva E; Pereira ME; Duarte AC
    Chemosphere; 2010 Mar; 78(11):1301-12. PubMed ID: 20122712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review.
    Du Laing G; Rinklebe J; Vandecasteele B; Meers E; Tack FM
    Sci Total Environ; 2009 Jun; 407(13):3972-85. PubMed ID: 18786698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils.
    Pueyo M; Mateu J; Rigol A; Vidal M; López-Sánchez JF; Rauret G
    Environ Pollut; 2008 Mar; 152(2):330-41. PubMed ID: 17655986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A search for trace elements in some human intracranial tumors by instrumental neutron activation analysis.
    Civit T; Houdayer AJ; Kennedy G
    Biol Trace Elem Res; 2000 Jun; 74(3):203-10. PubMed ID: 11055807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox status and heavy metal risk in intertidal sediments in NW Spain as inferred from the degrees of pyritization of iron and trace elements.
    Alvarez-Iglesias P; Rubio B
    Mar Pollut Bull; 2009 Apr; 58(4):542-51. PubMed ID: 19114282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic pollution in groundwater: a self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh.
    Tareq SM; Safiullah S; Anawar HM; Rahman MM; Ishizuka T
    Sci Total Environ; 2003 Sep; 313(1-3):213-26. PubMed ID: 12922072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.
    Arhin E; Boansi AO; Zango MS
    Environ Geochem Health; 2016 Feb; 38(1):203-18. PubMed ID: 25906709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumental neutron activation analysis of minor and trace elements in food in the Russian region that suffered from the Chernobyl disaster.
    Zaichick V
    Food Nutr Bull; 2002 Sep; 23(3 Suppl):191-4. PubMed ID: 12362793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithermal neutron activation analysis investigation of Clarion-Clipperton abyssal plane clay and polymetallic micronodules.
    Duliu OG; Cristache CI; Culicovc OA; Frontasyeva MV; Szobotca SA; Toma M
    Appl Radiat Isot; 2009 May; 67(5):939-43. PubMed ID: 19230682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus.
    Hossain MB; Jahiruddin M; Panaullah GM; Loeppert RH; Islam MR; Duxbury JM
    Environ Pollut; 2008 Dec; 156(3):739-44. PubMed ID: 18644665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace metal dynamics in floodplain soils of the river Elbe: a review.
    Schulz-Zunkel C; Krueger F
    J Environ Qual; 2009; 38(4):1349-62. PubMed ID: 19465710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.
    Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z
    J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The content of toxic trace elements in the conjugate media].
    Voronkova IP; Chesnokova LA
    Gig Sanit; 2009; (4):17-9. PubMed ID: 19799216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambient trace element background concentrations in soils and their use in risk assessment.
    Díez M; Simón M; Martín F; Dorronsoro C; García I; Van Gestel CA
    Sci Total Environ; 2009 Aug; 407(16):4622-32. PubMed ID: 19473692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of seleniferous soils using instrumental neutron activation analysis.
    Srivastava A; Bains GS; Acharya R; Reddy AV
    Appl Radiat Isot; 2011 May; 69(5):818-21. PubMed ID: 21334213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.