These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19031066)

  • 1. Modeling amyloid fibril formation: a free-energy approach.
    Wolf MG; Gestel Jv; de Leeuw SW
    Methods Mol Biol; 2008; 474():153-79. PubMed ID: 19031066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational approaches to fibril structure and formation.
    Hall CK; Wagoner VA
    Methods Enzymol; 2006; 412():338-65. PubMed ID: 17046667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid fibril structure modeling using protein threading and molecular dynamics simulations.
    Guo JT; Xu Y
    Methods Enzymol; 2006; 412():300-14. PubMed ID: 17046665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural models of amyloid-like fibrils.
    Nelson R; Eisenberg D
    Adv Protein Chem; 2006; 73():235-82. PubMed ID: 17190616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family.
    Iconomidou VA; Chryssikos GD; Gionis V; Galanis AS; Cordopatis P; Hoenger A; Hamodrakas SJ
    J Struct Biol; 2006 Dec; 156(3):480-8. PubMed ID: 17056273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A.
    Colombo G; Meli M; De Simone A
    Proteins; 2008 Feb; 70(3):863-72. PubMed ID: 17803210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of soluble amyloid oligomers from computer simulations.
    Melquiond A; Mousseau N; Derreumaux P
    Proteins; 2006 Oct; 65(1):180-91. PubMed ID: 16894607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid-beta(29-42) dimer formations studied by a multicanonical-multioverlap molecular dynamics simulation.
    Itoh SG; Okamoto Y
    J Phys Chem B; 2008 Mar; 112(10):2767-70. PubMed ID: 18271578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From the polymorphism of amyloid fibrils to their assembly mechanism and cytotoxicity.
    Kreplak L; Aebi U
    Adv Protein Chem; 2006; 73():217-33. PubMed ID: 17190615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions.
    Meersman F; Dobson CM; Heremans K
    Chem Soc Rev; 2006 Oct; 35(10):908-17. PubMed ID: 17003897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and thermodynamics of Alzheimer's amyloid-beta Abeta(16-35) monomer and dimer by replica exchange molecular dynamics simulations: implication for full-length Abeta fibrillation.
    Chebaro Y; Mousseau N; Derreumaux P
    J Phys Chem B; 2009 May; 113(21):7668-75. PubMed ID: 19415895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress towards a molecular-level structural understanding of amyloid fibrils.
    Tycko R
    Curr Opin Struct Biol; 2004 Feb; 14(1):96-103. PubMed ID: 15102455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling.
    Zhang J; Gao DY; Yearwood J
    J Theor Biol; 2011 Sep; 284(1):149-57. PubMed ID: 21723301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale modelling of amyloid formation from unfolded proteins using a set of theory derived rate constants.
    Hall D; Hirota N
    Biophys Chem; 2009 Mar; 140(1-3):122-8. PubMed ID: 19117660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipids enhance apolipoprotein C-II-derived amyloidogenic peptide oligomerization but inhibit fibril formation.
    Hung A; Griffin MD; Howlett GJ; Yarovsky I
    J Phys Chem B; 2009 Jul; 113(28):9447-53. PubMed ID: 19537801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional view of amyloid fibril nucleation in atomistic detail.
    Baftizadeh F; Biarnes X; Pietrucci F; Affinito F; Laio A
    J Am Chem Soc; 2012 Feb; 134(8):3886-94. PubMed ID: 22276669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential.
    Zhang Z; Chen H; Lai L
    Bioinformatics; 2007 Sep; 23(17):2218-25. PubMed ID: 17599928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.