BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19031082)

  • 1. Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry.
    Katow H; Elia L; Byrne M
    Dev Genes Evol; 2009 Feb; 219(2):67-77. PubMed ID: 19031082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens.
    Morris VB; Zhao JT; Shearman DC; Byrne M; Frommer M
    Int J Dev Biol; 2004 Feb; 48(1):17-22. PubMed ID: 15005570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unc-5/netrin-mediated axonal projection during larval serotonergic nervous system formation in the sea urchin, Hemicentrotus pulcherrimus.
    Abe K; Katow T; Ooka S; Katow H
    Int J Dev Biol; 2013; 57(5):415-25. PubMed ID: 23873373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system.
    Bishop CD; MacNeil KE; Patel D; Taylor VJ; Burke RD
    Dev Biol; 2013 May; 377(1):236-44. PubMed ID: 23506838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens.
    Morris VB; Byrne M
    Dev Genes Evol; 2014 Feb; 224(1):1-11. PubMed ID: 24129745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens.
    Morris VB; Byrne M
    J Exp Zool B Mol Dev Evol; 2005 Sep; 304(5):456-67. PubMed ID: 16075458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma.
    Emlet RB
    Dev Biol; 1995 Feb; 167(2):405-15. PubMed ID: 7875367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial analysis of immunochemical cell surface properties, location and formation of the serotonergic apical ganglion in sea urchin embryos.
    Yaguchi S; Kanoh K; Amemiya S; Katow H
    Dev Growth Differ; 2000 Oct; 42(5):479-88. PubMed ID: 11041489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal expression of a Netrin homolog in the sea urchin Hemicentrotus pulcherrimus (HpNetrin) during serotonergic axon extension.
    Katow H
    Int J Dev Biol; 2008; 52(8):1077-88. PubMed ID: 18956340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of metamorphosis induced by L-glutamine in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Yazaki I
    Zoolog Sci; 1995 Feb; 12(1):105-12. PubMed ID: 7795484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larval Development (with Observations on Spawning) of the Pencil Urchin Phyllacanthus imperialis: a New Intermediate Larval Form?
    Olson RR; Cameron JL; Young CM
    Biol Bull; 1993 Aug; 185(1):77-85. PubMed ID: 29300606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nervous system development in feeding and nonfeeding asteroid larvae and the early juvenile.
    Elia L; Selvakumaraswamy P; Byrne M
    Biol Bull; 2009 Jun; 216(3):322-34. PubMed ID: 19556597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of nitric oxide synthase-defined neurons in the sea urchin larval ciliary band and evidence for a chemosensory function during metamorphosis.
    Bishop CD; Brandhorst BP
    Dev Dyn; 2007 Jun; 236(6):1535-46. PubMed ID: 17474125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition.
    Wessel GM; Kiyomoto M; Shen TL; Yajima M
    Sci Rep; 2020 Feb; 10(1):1973. PubMed ID: 32029769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei.
    Bennett KC; Young CM; Emlet RB
    Biol Bull; 2012 Apr; 222(2):105-17. PubMed ID: 22589401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida).
    Vellutini BC; Migotto AE
    PLoS One; 2010 Mar; 5(3):e9654. PubMed ID: 20339592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo.
    Morris VB
    Dev Genes Evol; 2012 Nov; 222(6):313-23. PubMed ID: 23001286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary Conservation of the Larval Serotonergic Nervous System in a Direct Developing Sea Urchin: (sea urchin development/larval nervous systems/heterochrony/direct development/Heliocidaris erythrogramma).
    Bisgrove BW; Raff RA
    Dev Growth Differ; 1989 Aug; 31(4):363-370. PubMed ID: 37281459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Larval and juvenile development of the Echinometrid sea urchin Colobocentrotus mertensii: emergence of the peculiar form of spines.
    Thet MM; Noguchi M; Yazaki I
    Zoolog Sci; 2004 Mar; 21(3):265-74. PubMed ID: 15056921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent patterns of neural development in larval echinoids and asteroids.
    Nakajima Y; Kaneko H; Murray G; Burke RD
    Evol Dev; 2004; 6(2):95-104. PubMed ID: 15009122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.