BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19031286)

  • 1. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots.
    Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M
    Comput Aided Surg; 2008 Nov; 13(6):340-52. PubMed ID: 19031286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance propulsion, control and tracking at 24 Hz of an untethered device in the carotid artery of a living animal: an important step in the development of medical micro- and nanorobots.
    Martel S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1475-8. PubMed ID: 18002245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medical and technical protocol for automatic navigation of a wireless device in the carotid artery of a living swine using a standard clinical MRI system.
    Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):144-52. PubMed ID: 18051242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system.
    Mathieu JB; Beaudoin G; Martel S
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):292-9. PubMed ID: 16485758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time MRI-based control of a ferromagnetic core for endovascular navigation.
    Tamaz S; Gourdeau R; Chanu A; Mathieu JB; Martel S
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1854-63. PubMed ID: 18595804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adapting the clinical MRI software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions.
    Chanu A; Felfoul O; Beaudoin G; Martel S
    Magn Reson Med; 2008 Jun; 59(6):1287-97. PubMed ID: 18506794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules.
    Belharet K; Folio D; Ferreira A
    Minim Invasive Ther Allied Technol; 2010 Jun; 19(3):157-69. PubMed ID: 20497068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo MR-tracking based on magnetic signature selective excitation.
    Felfoul O; Mathieu JB; Beaudoin G; Martel S
    IEEE Trans Med Imaging; 2008 Jan; 27(1):28-35. PubMed ID: 18270059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils.
    Han BH; Park S; Lee SY
    Phys Med Biol; 2008 Sep; 53(17):4639-49. PubMed ID: 18695296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Future perspectives for intraoperative MRI.
    Jolesz FA
    Neurosurg Clin N Am; 2005 Jan; 16(1):201-13. PubMed ID: 15561539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary investigation of the feasibility of magnetic propulsion for future microdevices in blood vessels.
    Mathieu JB; Martel S; Yahia L; Soulez G; Beaudoin G
    Biomed Mater Eng; 2005; 15(5):367-74. PubMed ID: 16179757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time vascular interventional magnetic resonance imaging: the future of aortic stent-graft placement?
    Eggebrecht H; Heusch G; Erbel R; Ladd ME; Quick HH
    Basic Res Cardiol; 2007 Jan; 102(1):1-8. PubMed ID: 17006635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endovascular procedures under near-real-time MRI guidance: present status and future perspectives.
    Dion YM; de Wailly GW; Moisan C
    Surg Technol Int; 2002 Sep; 10():161-7. PubMed ID: 12384877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-guided and -monitored renal artery stenting using only MRI.
    Elgort DR; Hillenbrand CM; Zhang S; Wong EY; Rafie S; Lewin JS; Duerk JL
    J Magn Reson Imaging; 2006 May; 23(5):619-27. PubMed ID: 16555228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial in vivo studies with a polymer-based MR-compatible guide wire.
    Mekle R; Zenge MO; Ladd ME; Quick HH; Hofmann E; Scheffler K; Bilecen D
    J Vasc Interv Radiol; 2009 Oct; 20(10):1384-9. PubMed ID: 19699660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery.
    Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I
    Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards MRI guided surgical manipulator.
    Chinzei K; Miller K
    Med Sci Monit; 2001; 7(1):153-63. PubMed ID: 11208513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery.
    Renkawitz T; Tingart M; Grifka J; Sendtner E; Kalteis T
    Expert Rev Med Devices; 2009 Sep; 6(5):507-14. PubMed ID: 19751123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.