These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 19031286)
1. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M Comput Aided Surg; 2008 Nov; 13(6):340-52. PubMed ID: 19031286 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance propulsion, control and tracking at 24 Hz of an untethered device in the carotid artery of a living animal: an important step in the development of medical micro- and nanorobots. Martel S Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1475-8. PubMed ID: 18002245 [TBL] [Abstract][Full Text] [Related]
3. Medical and technical protocol for automatic navigation of a wireless device in the carotid artery of a living swine using a standard clinical MRI system. Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):144-52. PubMed ID: 18051242 [TBL] [Abstract][Full Text] [Related]
4. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. Mathieu JB; Beaudoin G; Martel S IEEE Trans Biomed Eng; 2006 Feb; 53(2):292-9. PubMed ID: 16485758 [TBL] [Abstract][Full Text] [Related]
5. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. Tamaz S; Gourdeau R; Chanu A; Mathieu JB; Martel S IEEE Trans Biomed Eng; 2008 Jul; 55(7):1854-63. PubMed ID: 18595804 [TBL] [Abstract][Full Text] [Related]
6. Adapting the clinical MRI software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions. Chanu A; Felfoul O; Beaudoin G; Martel S Magn Reson Med; 2008 Jun; 59(6):1287-97. PubMed ID: 18506794 [TBL] [Abstract][Full Text] [Related]
7. MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules. Belharet K; Folio D; Ferreira A Minim Invasive Ther Allied Technol; 2010 Jun; 19(3):157-69. PubMed ID: 20497068 [TBL] [Abstract][Full Text] [Related]
8. In vivo MR-tracking based on magnetic signature selective excitation. Felfoul O; Mathieu JB; Beaudoin G; Martel S IEEE Trans Med Imaging; 2008 Jan; 27(1):28-35. PubMed ID: 18270059 [TBL] [Abstract][Full Text] [Related]
9. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils. Han BH; Park S; Lee SY Phys Med Biol; 2008 Sep; 53(17):4639-49. PubMed ID: 18695296 [TBL] [Abstract][Full Text] [Related]
10. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots. Busch MH; Vollmann W; Grönemeyer DH Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878 [TBL] [Abstract][Full Text] [Related]
11. Future perspectives for intraoperative MRI. Jolesz FA Neurosurg Clin N Am; 2005 Jan; 16(1):201-13. PubMed ID: 15561539 [TBL] [Abstract][Full Text] [Related]
12. Preliminary investigation of the feasibility of magnetic propulsion for future microdevices in blood vessels. Mathieu JB; Martel S; Yahia L; Soulez G; Beaudoin G Biomed Mater Eng; 2005; 15(5):367-74. PubMed ID: 16179757 [TBL] [Abstract][Full Text] [Related]
13. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery. Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670 [TBL] [Abstract][Full Text] [Related]
14. Real-time vascular interventional magnetic resonance imaging: the future of aortic stent-graft placement? Eggebrecht H; Heusch G; Erbel R; Ladd ME; Quick HH Basic Res Cardiol; 2007 Jan; 102(1):1-8. PubMed ID: 17006635 [TBL] [Abstract][Full Text] [Related]
15. Endovascular procedures under near-real-time MRI guidance: present status and future perspectives. Dion YM; de Wailly GW; Moisan C Surg Technol Int; 2002 Sep; 10():161-7. PubMed ID: 12384877 [TBL] [Abstract][Full Text] [Related]
16. Image-guided and -monitored renal artery stenting using only MRI. Elgort DR; Hillenbrand CM; Zhang S; Wong EY; Rafie S; Lewin JS; Duerk JL J Magn Reson Imaging; 2006 May; 23(5):619-27. PubMed ID: 16555228 [TBL] [Abstract][Full Text] [Related]
17. Initial in vivo studies with a polymer-based MR-compatible guide wire. Mekle R; Zenge MO; Ladd ME; Quick HH; Hofmann E; Scheffler K; Bilecen D J Vasc Interv Radiol; 2009 Oct; 20(10):1384-9. PubMed ID: 19699660 [TBL] [Abstract][Full Text] [Related]
18. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026 [TBL] [Abstract][Full Text] [Related]
19. Towards MRI guided surgical manipulator. Chinzei K; Miller K Med Sci Monit; 2001; 7(1):153-63. PubMed ID: 11208513 [TBL] [Abstract][Full Text] [Related]
20. Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery. Renkawitz T; Tingart M; Grifka J; Sendtner E; Kalteis T Expert Rev Med Devices; 2009 Sep; 6(5):507-14. PubMed ID: 19751123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]