BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19031920)

  • 1. Comment on "Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen".
    Jiang J; Pang SY; Ma J
    Environ Sci Technol; 2008 Nov; 42(21):8167-8; author reply 8169. PubMed ID: 19031920
    [No Abstract]   [Full Text] [Related]  

  • 2. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen.
    Lee C; Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Jul; 42(13):4921-6. PubMed ID: 18678027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.
    Kim HH; Lee H; Kim HE; Seo J; Hong SW; Lee JY; Lee C
    Water Res; 2015 Dec; 86():66-73. PubMed ID: 26093796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Sep; 42(18):6936-41. PubMed ID: 18853812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on "Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen".
    Jiang J; Pang SY; Ma J
    Environ Sci Technol; 2008 Jul; 42(14):5377; author reply 5378. PubMed ID: 18754397
    [No Abstract]   [Full Text] [Related]  

  • 6. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide.
    Lee H; Lee HJ; Sedlak DL; Lee C
    Chemosphere; 2013 Jul; 92(6):652-8. PubMed ID: 23433935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insight into the oxidation of arsenite by the reaction of zerovalent iron and oxygen. Comment on "pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water".
    Pang SY; Jiang J; Ma J; Pang SY; Ouyang F
    Environ Sci Technol; 2009 May; 43(10):3978-9; author reply 3980-1. PubMed ID: 19544919
    [No Abstract]   [Full Text] [Related]  

  • 8. Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen.
    Lee C; Sedlak DL
    Environ Sci Technol; 2008 Nov; 42(22):8528-33. PubMed ID: 19068843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Feb; 42(4):1262-7. PubMed ID: 18351103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.
    Lee H; Lee HJ; Kim HE; Kweon J; Lee BD; Lee C
    J Hazard Mater; 2014 Jan; 265():201-7. PubMed ID: 24361799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron.
    Joo SH; Feitz AJ; Sedlak DL; Waite TD
    Environ Sci Technol; 2005 Mar; 39(5):1263-8. PubMed ID: 15787365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comment on "Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle".
    Noubactep C
    Environ Sci Technol; 2009 May; 43(10):3964-5; author reply 3966-7. PubMed ID: 19544915
    [No Abstract]   [Full Text] [Related]  

  • 14. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment.
    Yoon J; Lee Y; Kim S
    Water Sci Technol; 2001; 44(5):15-21. PubMed ID: 11695453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.
    Grebel JE; Pignatello JJ; Mitch WA
    Environ Sci Technol; 2010 Sep; 44(17):6822-8. PubMed ID: 20681567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter.
    Rose AL; Waite TD
    Environ Sci Technol; 2002 Feb; 36(3):433-44. PubMed ID: 11871559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative removal of arsenite by Fe(II)- and polyoxometalate (POM)-amended zero-valent aluminum (ZVAl) under oxic conditions.
    Wu CC; Hus LC; Chiang PN; Liu JC; Kuan WH; Chen CC; Tzou YM; Wang MK; Hwang CE
    Water Res; 2013 May; 47(7):2583-91. PubMed ID: 23497977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process optimization in use of zero valent iron nanoparticles for oxidative transformations.
    Mylon SE; Sun Q; Waite TD
    Chemosphere; 2010 Sep; 81(1):127-31. PubMed ID: 20619873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on "Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction".
    Remucal CK; Lee C; Sedlak DL
    Environ Sci Technol; 2011 Apr; 45(7):3177-8; author reply 3179-80. PubMed ID: 21375289
    [No Abstract]   [Full Text] [Related]  

  • 20. Capacity and recycling of polyoxometalate applied in As(III) oxidation by Fe(II)-Amended zero-valent aluminum.
    Hsu LC; Cho YL; Liu YT; Tzou YM; Teah HY
    Chemosphere; 2018 Jun; 200():1-7. PubMed ID: 29471163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.