These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 19032002)

  • 1. Optimization solutions depend on the choice of coordinate system.
    Czaplicki A
    Acta Bioeng Biomech; 2008; 10(2):75-9. PubMed ID: 19032002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimal control model for maximum-height human jumping.
    Pandy MG; Zajac FE; Sim E; Levine WS
    J Biomech; 1990; 23(12):1185-98. PubMed ID: 2292598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are natural coordinates a useful tool in modeling planar biomechanical linkages?
    Czaplicki A
    J Biomech; 2007; 40(10):2307-12. PubMed ID: 17166498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static and dynamic optimization solutions for gait are practically equivalent.
    Anderson FC; Pandy MG
    J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictions of antagonistic muscular activity using nonlinear optimization.
    Herzog W; Binding P
    Math Biosci; 1992 Oct; 111(2):217-29. PubMed ID: 1515744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Hill-type musculotendon models with activation-force-length coupling.
    Sun L; Sun Y; Huang Z; Hou J; Wu J
    Technol Health Care; 2018; 26(6):909-920. PubMed ID: 29914041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines.
    Sartori M; Reggiani M; van den Bogert AJ; Lloyd DG
    J Biomech; 2012 Feb; 45(3):595-601. PubMed ID: 22176708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the Distribution of Leg Muscles for Vertical Jumping.
    Wong JD; Bobbert MF; van Soest AJ; Gribble PL; Kistemaker DA
    PLoS One; 2016; 11(2):e0150019. PubMed ID: 26919645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematical analysis of mandibular motion in a sagittal plane.
    Margielewicz J; Chladek W; Lipski T
    Acta Bioeng Biomech; 2008; 10(1):9-19. PubMed ID: 18634349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle forces predicted using optimization methods are coordinate system dependent.
    Pierce JE; Li G
    J Biomech; 2005 Apr; 38(4):695-702. PubMed ID: 15713289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems.
    Pandy MG; Anderson FC; Hull DG
    J Biomech Eng; 1992 Nov; 114(4):450-60. PubMed ID: 1487896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force enhancement and force depression in a modified muscle model used for muscle activation prediction.
    Kosterina N; Wang R; Eriksson A; Gutierrez-Farewik EM
    J Electromyogr Kinesiol; 2013 Aug; 23(4):759-65. PubMed ID: 23561824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The necessity of physiological muscle parameters for computing the muscle forces: application to lower extremity loading during pedalling.
    Cadová M; Vilímek M
    Acta Bioeng Biomech; 2009; 11(3):59-64. PubMed ID: 20131752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction.
    Cleather DJ; Bull AM
    Ann Biomed Eng; 2011 Jul; 39(7):1925-34. PubMed ID: 21445690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models.
    Blemker SS; Delp SL
    J Biomech; 2006; 39(8):1383-91. PubMed ID: 15972213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.