These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 19032046)
1. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. Li Y; Chen X; Gu N J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. Li Y; Gu N J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444 [TBL] [Abstract][Full Text] [Related]
3. Biophysical characterization of nanoparticle-endothelial model cell membrane interactions. Peetla C; Labhasetwar V Mol Pharm; 2008; 5(3):418-29. PubMed ID: 18271547 [TBL] [Abstract][Full Text] [Related]
4. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry. da Rocha EL; Caramori GF; Rambo CR Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270 [TBL] [Abstract][Full Text] [Related]
5. Surface-structure-regulated penetration of nanoparticles across a cell membrane. Li Y; Li X; Li Z; Gao H Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866 [TBL] [Abstract][Full Text] [Related]
6. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations. Prates Ramalho JP; Gkeka P; Sarkisov L Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652 [TBL] [Abstract][Full Text] [Related]
7. Harnessing janus nanoparticles to create controllable pores in membranes. Alexeev A; Uspal WE; Balazs AC ACS Nano; 2008 Jun; 2(6):1117-22. PubMed ID: 19206328 [TBL] [Abstract][Full Text] [Related]