These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 19032046)

  • 1. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical characterization of nanoparticle-endothelial model cell membrane interactions.
    Peetla C; Labhasetwar V
    Mol Pharm; 2008; 5(3):418-29. PubMed ID: 18271547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing janus nanoparticles to create controllable pores in membranes.
    Alexeev A; Uspal WE; Balazs AC
    ACS Nano; 2008 Jun; 2(6):1117-22. PubMed ID: 19206328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-electron tomography of nanoparticle transmigration into liposome.
    Le Bihan O; Bonnafous P; Marak L; Bickel T; Trépout S; Mornet S; De Haas F; Talbot H; Taveau JC; Lambert O
    J Struct Biol; 2009 Dec; 168(3):419-25. PubMed ID: 19596070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles.
    Lee OS; Schatz GC
    Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-mediated interactions between nanoparticles on a substrate.
    Liang Q; Chen QH; Ma YQ
    J Phys Chem B; 2010 Apr; 114(16):5359-64. PubMed ID: 20369863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling nanoparticle wrapping or translocation in bilayer membranes.
    Curtis EM; Bahrami AH; Weikl TR; Hall CK
    Nanoscale; 2015 Sep; 7(34):14505-14. PubMed ID: 26260123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study.
    Chang R; Violi A
    J Phys Chem B; 2006 Mar; 110(10):5073-83. PubMed ID: 16526750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of oleic acid with dipalmitoylphosphatidylcholine (DPPC) bilayers simulated by molecular dynamics.
    Notman R; Noro MG; Anwar J
    J Phys Chem B; 2007 Nov; 111(44):12748-55. PubMed ID: 17939702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of supported lipid bilayers by semihydrophobic nanoparticles.
    Jing B; Zhu Y
    J Am Chem Soc; 2011 Jul; 133(28):10983-9. PubMed ID: 21631111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guiding the location of nanoparticles into vesicular structures: a morphological study.
    Binder WH; Sachsenhofer R; Farnik D; Blaas D
    Phys Chem Chem Phys; 2007 Dec; 9(48):6435-41. PubMed ID: 18060174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes.
    Bennett WF; MacCallum JL; Tieleman DP
    J Am Chem Soc; 2009 Feb; 131(5):1972-8. PubMed ID: 19146400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium morphologies of nonionic lipid-nanoparticle mixtures in water: a self-consistent mean-field prediction.
    Lauw Y
    J Colloid Interface Sci; 2009 Apr; 332(2):491-6. PubMed ID: 19185310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of lipid bilayers with supports: a coarse-grained molecular simulation study.
    Xing C; Faller R
    J Phys Chem B; 2008 Jun; 112(23):7086-94. PubMed ID: 18461982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.