These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 19032155)
1. MY01, a class XIV myosin, affects developmentally-regulated elimination of the macronucleus during conjugation of Tetrahymena thermophila. Garcés J; Hosein RE; Gavin RH Biol Cell; 2009 Jul; 101(7):393-400. PubMed ID: 19032155 [TBL] [Abstract][Full Text] [Related]
2. MyTH4, independent of its companion FERM domain, affects the organization of an intramacronuclear microtubule array and is involved in elongation of the macronucleus in Tetrahymena thermophila. Gotesman M; Hosein RE; Gavin RH Cytoskeleton (Hoboken); 2011 Apr; 68(4):220-36. PubMed ID: 21387572 [TBL] [Abstract][Full Text] [Related]
3. Myo1 localizes to phagosomes, some of which traffic to the nucleus in a Myo1-dependent manner in Tetrahymena thermophila. Hosein RE; Gavin RH Cell Motil Cytoskeleton; 2007 Dec; 64(12):926-35. PubMed ID: 17688250 [TBL] [Abstract][Full Text] [Related]
4. A FERM domain in a class XIV myosin interacts with actin and tubulin and localizes to the cytoskeleton, phagosomes, and nucleus in Tetrahymena thermophila. Gotesman M; Hosein RE; Gavin RH Cytoskeleton (Hoboken); 2010 Feb; 67(2):90-101. PubMed ID: 20169533 [TBL] [Abstract][Full Text] [Related]
5. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth. Li S; Yin L; Cole ES; Udani RA; Karrer KM Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831 [TBL] [Abstract][Full Text] [Related]
6. A developmentally regulated gene, ASI2, is required for endocycling in the macronuclear anlagen of Tetrahymena. Yin L; Gater ST; Karrer KM Eukaryot Cell; 2010 Sep; 9(9):1343-53. PubMed ID: 20656911 [TBL] [Abstract][Full Text] [Related]
7. Lysosomal enzymes in the macronucleus of Tetrahymena during its apoptosis-like degradation. Lu E; Wolfe J Cell Death Differ; 2001 Mar; 8(3):289-97. PubMed ID: 11319612 [TBL] [Abstract][Full Text] [Related]
8. Caspase-like activity is required for programmed nuclear elimination during conjugation in Tetrahymena. Ejercito M; Wolfe J J Eukaryot Microbiol; 2003; 50(6):427-9. PubMed ID: 14733434 [TBL] [Abstract][Full Text] [Related]
9. Subcellular localization and role of Ran1 in Tetrahymena thermophila amitotic macronucleus. Liang H; Xu J; Zhao D; Tian H; Yang X; Liang A; Wang W FEBS J; 2012 Jul; 279(14):2520-33. PubMed ID: 22594798 [TBL] [Abstract][Full Text] [Related]
10. Programmed nuclear death: apoptotic-like degradation of specific nuclei in conjugating Tetrahymena. Davis MC; Ward JG; Herrick G; Allis CD Dev Biol; 1992 Dec; 154(2):419-32. PubMed ID: 1426647 [TBL] [Abstract][Full Text] [Related]
11. Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila. Stargell LA; Bowen J; Dadd CA; Dedon PC; Davis M; Cook RG; Allis CD; Gorovsky MA Genes Dev; 1993 Dec; 7(12B):2641-51. PubMed ID: 8276246 [TBL] [Abstract][Full Text] [Related]
12. Effects of nullisomic chromosome deficiencies on conjugation events in Tetrahymena thermophila: insufficiency of the parental macronucleus to direct postzygotic development. Ward JG; Davis MC; Allis CD; Herrick G Genetics; 1995 Jul; 140(3):989-1005. PubMed ID: 7672597 [TBL] [Abstract][Full Text] [Related]
13. DNA digestion and chromatin condensation during nuclear death in Tetrahymena. Mpoke S; Wolfe J Exp Cell Res; 1996 Jun; 225(2):357-65. PubMed ID: 8660924 [TBL] [Abstract][Full Text] [Related]
14. Tetrahymena thermophila JMJD3 homolog regulates H3K27 methylation and nuclear differentiation. Chung PH; Yao MC Eukaryot Cell; 2012 May; 11(5):601-14. PubMed ID: 22427430 [TBL] [Abstract][Full Text] [Related]
15. Mutation affecting cell separation and macronuclear resorption during conjugation in Tetrahymena thermophila: early expression of the zygotic genotype. Kaczanowski A Dev Genet; 1992; 13(1):58-65. PubMed ID: 1395143 [TBL] [Abstract][Full Text] [Related]
16. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Cui B; Gorovsky MA Mol Cell Biol; 2006 Jun; 26(12):4499-510. PubMed ID: 16738316 [TBL] [Abstract][Full Text] [Related]
17. Effects of the transcription inhibitor actinomycin D on postzygotic development of Tetrahymena thermophila conjugants. Ward JG; Herrick G Dev Biol; 1996 Jan; 173(1):174-84. PubMed ID: 8575619 [TBL] [Abstract][Full Text] [Related]
18. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. Akematsu T; Fukuda Y; Attiq R; Pearlman RE Autophagy; 2014 Feb; 10(2):209-25. PubMed ID: 24280724 [TBL] [Abstract][Full Text] [Related]
19. An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila. Lin IT; Chao JL; Yao MC Mol Biol Cell; 2012 Jun; 23(11):2213-25. PubMed ID: 22513090 [TBL] [Abstract][Full Text] [Related]
20. Isolation of a Tetrahymena thermophila strain which induced metaphase I meiotic arrest: new pathway of abortive conjugation. Kaczanowski A; Kiersnowska M; Kaczanowska J J Eukaryot Microbiol; 2004; 51(3):351-63. PubMed ID: 15218706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]