BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 19032165)

  • 1. In silico identification of putative drug targets from different metabolic pathways of Aeromonas hydrophila.
    Sharma V; Gupta P; Dixit A
    In Silico Biol; 2008; 8(3-4):331-8. PubMed ID: 19032165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-iDT : tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis.
    Singh NK; Selvam SM; Chakravarthy P
    In Silico Biol; 2006; 6(6):485-93. PubMed ID: 17518759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification.
    Perumal D; Lim CS; Sakharkar KR; Sakharkar MK
    In Silico Biol; 2007; 7(4-5):453-65. PubMed ID: 18391237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets.
    Chong CE; Lim BS; Nathan S; Mohamed R
    In Silico Biol; 2006; 6(4):341-6. PubMed ID: 16922696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocomputational strategies for microbial drug target identification.
    Sakharkar KR; Sakharkar MK; Chow VT
    Methods Mol Med; 2008; 142():1-9. PubMed ID: 18437301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunoproteomics of extracellular proteins of the Aeromonas hydrophila China vaccine strain J-1 reveal a highly immunoreactive outer membrane protein.
    Ni XD; Wang N; Liu YJ; Lu CP
    FEMS Immunol Med Microbiol; 2010 Apr; 58(3):363-73. PubMed ID: 20459508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic study of polyhydroxyalkanoates producing Aeromonas hydrophila 4AK4.
    Gao X; Jian J; Li WJ; Yang YC; Shen XW; Sun ZR; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9099-109. PubMed ID: 24000047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a new hemolysin from diarrheal isolate SSU of Aeromonas hydrophila.
    Erova TE; Sha J; Horneman AJ; Borchardt MA; Khajanchi BK; Fadl AA; Chopra AK
    FEMS Microbiol Lett; 2007 Oct; 275(2):301-11. PubMed ID: 17725618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91.
    Yu HB; Zhang YL; Lau YL; Yao F; Vilches S; Merino S; Tomas JM; Howard SP; Leung KY
    Appl Environ Microbiol; 2005 Aug; 71(8):4469-77. PubMed ID: 16085838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Aeromonas hydrophila identification by TaqMan PCR assay: comparison with a phenotypic method.
    Trakhna F; Harf-Monteil C; Abdelnour A; Maaroufi A; Gadonna-Widehem P
    Lett Appl Microbiol; 2009 Aug; 49(2):186-90. PubMed ID: 19413760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico identification of potential therapeutic targets in the human pathogen Helicobacter pylori.
    Dutta A; Singh SK; Ghosh P; Mukherjee R; Mitter S; Bandyopadhyay D
    In Silico Biol; 2006; 6(1-2):43-7. PubMed ID: 16789912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, characterisation and expression of Aeromonas hydrophila major adhesin.
    Fang HM; Ge R; Sin YM
    Fish Shellfish Immunol; 2004 May; 16(5):645-58. PubMed ID: 15110338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting conserved essential genes in bacteria: in silico identification of putative drug targets.
    Duffield M; Cooper I; McAlister E; Bayliss M; Ford D; Oyston P
    Mol Biosyst; 2010 Dec; 6(12):2482-9. PubMed ID: 20949199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between production of acyl homoserine lactones and proteases in an Aeromonas hydrophila aroA live vaccine.
    Vivas J; Razquin BE; López-Fierro P; Naharro G; Villena A
    Vet Microbiol; 2004 Jul; 101(3):167-76. PubMed ID: 15223121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Aeromonas hydrophila  infection model using the protozoan Tetrahymena thermophila.
    Li J; Zhang XL; Liu YJ; Lu CP
    FEMS Microbiol Lett; 2011 Mar; 316(2):160-8. PubMed ID: 21204941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycoplasma genitalium: a comparative genomics study of metabolic pathways for the identification of drug and vaccine targets.
    Butt AM; Tahir S; Nasrullah I; Idrees M; Lu J; Tong Y
    Infect Genet Evol; 2012 Jan; 12(1):53-62. PubMed ID: 22057004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades.
    Seshadri R; Joseph SW; Chopra AK; Sha J; Shaw J; Graf J; Haft D; Wu M; Ren Q; Rosovitz MJ; Madupu R; Tallon L; Kim M; Jin S; Vuong H; Stine OC; Ali A; Horneman AJ; Heidelberg JF
    J Bacteriol; 2006 Dec; 188(23):8272-82. PubMed ID: 16980456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.
    Damte D; Suh JW; Lee SJ; Yohannes SB; Hossain MA; Park SC
    Genomics; 2013 Jul; 102(1):47-56. PubMed ID: 23628646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Druggability of human disease genes.
    Sakharkar MK; Sakharkar KR; Pervaiz S
    Int J Biochem Cell Biol; 2007; 39(6):1156-64. PubMed ID: 17446117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.